Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
MTX/methotrexate analog; DHFR/dihydrofolate reductase; anticancer
|
---|---|
ln Vitro |
ABCG2 is a plasma membrane efflux pump that is able to confer resistance to several anticancer agents, including mitoxantrone, camptothecins, anthracyclines, and flavopiridol. The antimetabolite methotrexate (MTX) was inferred recently to be an additional substrate of the pump based on the analysis of ABCG2-overexpressing cell lines. However, the transport characteristics of the pump with regard to this agent have not been determined. In addition, physiological substrates of ABCG2 have not been identified. Here we examine the in vitro transport properties of the pump using membrane vesicles prepared from HEK293 cells transfected with ABCG2 expression vector. In so doing it is shown that MTX is a high capacity low affinity substrate of the pump, with K(m) and V(max) values of 1.34 +/- 0.18 mM and 687 +/- 87 pmol/mg/min, respectively. Unlike previously characterized multidrug resistance protein family members, ABCG2 is also able to transport MTX diglutamate and MTX triglutamate. However, addition of even one more glutamyl residue is sufficient to completely abrogate ABCG2-mediated transport. By contrast with the wild-type protein (ABCG2-R482), two ABCG2 variants that have been identified in drug selected cell lines, R482T and R482G, were unable to transport MTX to any extent. Similarly, folic acid was subject to efflux by the wild-type protein but not by the two mutants. However, transport of the reduced folate leucovorin was not detected for either the wild-type or the mutant proteins. Finally, it is shown that ABCG2 is capable of transporting E(2)17betaG with K(m) and V(max) values of 44.2 +/- 4.3 micro M and 103 +/- 17 pmol/mg/min, respectively. These results indicate that ABCG2 is a component of the energy-dependent efflux system for certain folates and antifolates, but that its transport characteristics with respect to polyglutamates and reduced folates are not identical to those of multidrug resistance protein family members. In addition, it is demonstrated that R482 mutations observed in drug-resistant cell lines have profound effects on the in vitro transport properties of the pump[1].
|
References |
[1]. Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-D-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res. 2003 Jul 15;63(14):4048-54.
|
Molecular Formula |
C30H36N10O11
|
---|---|
Molecular Weight |
712.67
|
Exact Mass |
712.257
|
Elemental Analysis |
C, 50.56; H, 5.09; N, 19.65; O, 24.69
|
CAS # |
41600-14-0
|
PubChem CID |
456144
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.54g/cm3
|
Index of Refraction |
1.683
|
LogP |
1.302
|
Hydrogen Bond Donor Count |
9
|
Hydrogen Bond Acceptor Count |
18
|
Rotatable Bond Count |
19
|
Heavy Atom Count |
51
|
Complexity |
1270
|
Defined Atom Stereocenter Count |
3
|
SMILES |
CN(CC1=CN=C2C(=N1)C(=NC(=N2)N)N)C3=CC=C(C=C3)C(=O)NC(CCC(=O)NC(CCC(=O)NC(CCC(=O)O)C(=O)O)C(=O)O)C(=O)O
|
InChi Key |
SBFRVUOTZGQNGW-FHWLQOOXSA-N
|
InChi Code |
InChI=1S/C30H36N10O11/c1-40(13-15-12-33-25-23(34-15)24(31)38-30(32)39-25)16-4-2-14(3-5-16)26(45)37-19(29(50)51)7-10-21(42)35-17(27(46)47)6-9-20(41)36-18(28(48)49)8-11-22(43)44/h2-5,12,17-19H,6-11,13H2,1H3,(H,35,42)(H,36,41)(H,37,45)(H,43,44)(H,46,47)(H,48,49)(H,50,51)(H4,31,32,33,38,39)/t17-,18-,19-/m0/s1
|
Chemical Name |
(2S)-2-[[(4S)-4-carboxy-4-[[(4S)-4-carboxy-4-[[4-[(2,4-diaminopteridin-6-yl)methyl-methylamino]benzoyl]amino]butanoyl]amino]butanoyl]amino]pentanedioic acid
|
Synonyms |
NSC-341076; NSC 341076; NSC341076; 41600-14-0; NSC 341076; L-Glutamic acid, N-(4-(((2,4-diamino-6-pteridinyl)methyl)methylamino)benzoyl)-L-gamma-glutamyl-L-gamma-glutamyl-; L-Glutamic acid, N-(N-(4-(((2,4-diamino-6-pteridinyl)methyl)methyl-; (2S)-2-[[(4S)-4-Carboxy-4-[[(4S)-4-carboxy-4-[[4-[(2,4-diaminopteridin-6-yl)methyl-methylamino]benzoyl]amino]butanoyl]amino]butanoyl]amino]pentanedioic acid; L-Glutamic acid, N-[N-[4-[[(2,4-diamino-6-pteridinyl)methyl]methyl-; CHEMBL2074970; NSC341076
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.4032 mL | 7.0159 mL | 14.0317 mL | |
5 mM | 0.2806 mL | 1.4032 mL | 2.8063 mL | |
10 mM | 0.1403 mL | 0.7016 mL | 1.4032 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.