yingweiwo

NU6102

Alias: NU6102 NU-6102 NU 6102.
Cat No.:V19915 Purity: ≥98%
NU6102 is a novel and potent inhibitor of Cdk1 and Cdk2 with Kis of 9 and 6 nM and IC50 of 9.5 and 5.4 nM, respectively.
NU6102
NU6102 Chemical Structure CAS No.: 444722-95-6
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
50mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

NU6102 is a novel and potent inhibitor of Cdk1 and Cdk2 with Kis of 9 and 6 nM and IC50 of 9.5 and 5.4 nM, respectively. NU 6102 inhibits Cdk4 activity with an IC50 of 1.6 μM

Biological Activity I Assay Protocols (From Reference)
ln Vitro
NU6102 selectively inhibits the growth of CDK2 WT (wild type) and KO MEF (knockout mouse embryonic fibroblasts) (GI50 of 14 μM and >30 μM). Treatment with NU6102 (0-30 μM; 1-24 hours; SKUT 1B cells) induces G2 arrest, inhibition of Rb phosphorylation, and cytotoxicity in SKUT-1B cells (LC50 after 24 hours of exposure is 2.6 μM) [3]. NU6102 inhibits cell growth and causes cell cycle phase arrest in a time-dependent manner in human breast cancer cell lines, G2/M phase arrest in asynchronously growing cell lines, cells released by serum starvation, and G1 in the nucleus of Xenopus laevis cells /S phase arrest[3].
ln Vivo
After administering NU6102 intravenously and intraperitoneally to Balb/C mice, the drug's pharmacokinetics were ascertained. The maximum dosing dose of NU6102 is 1 mg/kg iv and 10 mg/kg ip due to its limited solubility. NU6301 releases NU6102 after ip or iv administration, and peak plasma levels of 12 μM NU6102 are observed 5 minutes after iv administration. The peak concentration reached after intravenous injection of the maximum dose of NU6102 was 0.92 μM. Following the injection of NU6301, the plasma half-life of NU6102 is 42 minutes for intraperitoneal administration and 10 minutes for intravenous administration [3].
Cell Assay
Cell cycle analysis[3]
Cell Types: SKUT 1B Cell
Tested Concentrations: 0 μM, 3 μM, 10 μM and 30 μM
Incubation Duration: 1 hour, 3 hrs (hours), 6 hrs (hours) and 24 hrs (hours)
Experimental Results: Induction of G2 arrest, inhibition of Rb phosphorylation and cytotoxicity (LC50 2.6 μM after 24 hrs (hours) of exposure).
References

[1]. N2-substituted O6-cyclohexylmethylguanine derivatives: potent inhibitors of cyclin-dependent kinases 1 and 2. J Med Chem. 2004 Jul 15;47(15):3710-22.

[2]. Dissecting the determinants of cyclin-dependent kinase 2 and cyclin-dependent kinase 4 inhibitor selectivity. J Med Chem. 2006 Sep 7;49(18):5470-7.

[3]. Preclinical in vitro and in vivo evaluation of the potent and specific cyclin-dependent kinase 2 inhibitor NU6102 and a water soluble prodrug NU6301. Eur J Cancer. 2011 Sep;47(13):2052-9.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C18H22N6O3S
Molecular Weight
402.47068
Exact Mass
402.147
CAS #
444722-95-6
PubChem CID
4566
Appearance
White to yellow solid powder
Density
1.6±0.1 g/cm3
Boiling Point
612.9±65.0 °C at 760 mmHg
Flash Point
324.5±34.3 °C
Vapour Pressure
0.0±1.8 mmHg at 25°C
Index of Refraction
1.746
LogP
1.42
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
6
Heavy Atom Count
28
Complexity
601
Defined Atom Stereocenter Count
0
InChi Key
OWXORKPNCHJYOF-UHFFFAOYSA-N
InChi Code
InChI=1S/C18H22N6O3S/c19-28(25,26)14-8-6-13(7-9-14)22-18-23-16-15(20-11-21-16)17(24-18)27-10-12-4-2-1-3-5-12/h6-9,11-12H,1-5,10H2,(H2,19,25,26)(H2,20,21,22,23,24)
Chemical Name
4-((6-(cyclohexylmethoxy)-9H-purin-2-yl)amino)benzenesulfonamide
Synonyms
NU6102 NU-6102 NU 6102.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~248.47 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (6.21 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (6.21 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (6.21 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4847 mL 12.4233 mL 24.8466 mL
5 mM 0.4969 mL 2.4847 mL 4.9693 mL
10 mM 0.2485 mL 1.2423 mL 2.4847 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us