yingweiwo

Nusinersen

Cat No.:V40954 Purity: ≥98%
Nusinersen (Spinraza) is an FDA-approved medication used in the treatment of spinal muscular atrophy, a rare neuromuscular disorder.
Nusinersen
Nusinersen Chemical Structure CAS No.: 1258984-36-9
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

Nusinersen (Spinraza) is an FDA-approved medication used in the treatment of spinal muscular atrophy, a rare neuromuscular disorder. It is an antisense oligo(ribo)nucleotide (ASO) that is able to induce survival of motor neuron (SMN) expression. In December 2016, it became the first approved drug used in treating this disorder. Nusinersen cost US$750,000 in the first year and US$375,000 annually after that in the United States as of 2019.

Biological Activity I Assay Protocols (From Reference)
Targets
SMN2 gene
ln Vitro
By inhibiting the intronic splicing silencer in SMN2, the SMN-ASO nusinersen raises SMN levels and facilitates the inclusion of exon 7 and the production of FL-SMN2 transcripts [2].
ln Vivo
In the interim analysis, a significantly higher percentage of infants in the nusinersen group than in the control group had a motor-milestone response (21 of 51 infants [41%] vs. 0 of 27 [0%], P<0.001), and this result prompted early termination of the trial. In the final analysis, a significantly higher percentage of infants in the nusinersen group than in the control group had a motor-milestone response (37 of 73 infants [51%] vs. 0 of 37 [0%]), and the likelihood of event-free survival was higher in the nusinersen group than in the control group (hazard ratio for death or the use of permanent assisted ventilation, 0.53; P=0.005). The likelihood of overall survival was higher in the nusinersen group than in the control group (hazard ratio for death, 0.37; P=0.004), and infants with a shorter disease duration at screening were more likely than those with a longer disease duration to benefit from nusinersen. The incidence and severity of adverse events were similar in the two groups. Conclusions: Among infants with spinal muscular atrophy, those who received nusinersen were more likely to be alive and have improvements in motor function than those in the control group. Early treatment may be necessary to maximize the benefit of the drug. (Funded by Biogen and Ionis Pharmaceuticals; ENDEAR ClinicalTrials.gov number, NCT02193074 .).[1]
pinal muscular atrophy (SMA) is a neuromuscular disease causing the most frequent genetic childhood lethality. Recently, nusinersen, an antisense oligonucleotide (ASO) that corrects SMN2 splicing and thereby increases full-length SMN protein, has been approved by the FDA and EMA for SMA therapy. However, the administration of nusinersen in severe and/or post-symptomatic SMA-affected individuals is insufficient to counteract the disease. Therefore, additional SMN-independent therapies are needed to support the function of motoneurons and neuromuscular junctions. We recently identified asymptomatic SMN1-deleted individuals who were protected against SMA by reduced expression of neurocalcin delta (NCALD). NCALD reduction is proven to be a protective modifier of SMA across species, including worm, zebrafish, and mice. Here, we identified Ncald-ASO3-out of 450 developed Ncald ASOs-as the most efficient and non-toxic ASO for the CNS, by applying a stepwise screening strategy in cortical neurons and adult and neonatal mice. In a randomized-blinded preclinical study, a single subcutaneous low-dose SMN-ASO and a single intracerebroventricular Ncald-ASO3 or control-ASO injection were presymptomatically administered in a severe SMA mouse model. NCALD reduction of >70% persisted for about 1 month. While low-dose SMN-ASO rescues multiorgan impairment, additional NCALD reduction significantly ameliorated SMA pathology including electrophysiological and histological properties of neuromuscular junctions and muscle at P21 and motoric deficits at 3 months. The present study shows the additional benefit of a combinatorial SMN-dependent and SMN-independent ASO-based therapy for SMA. This work illustrates how a modifying gene, identified in some asymptomatic individuals, helps to develop a therapy for all SMA-affected individuals.[2]
Animal Protocol
Background: Spinal muscular atrophy is an autosomal recessive neuromuscular disorder that is caused by an insufficient level of survival motor neuron (SMN) protein. Nusinersen is an antisense oligonucleotide drug that modifies pre-messenger RNA splicing of the SMN2 gene and thus promotes increased production of full-length SMN protein. Methods: We conducted a randomized, double-blind, sham-controlled, phase 3 efficacy and safety trial of nusinersen in infants with spinal muscular atrophy. The primary end points were a motor-milestone response (defined according to results on the Hammersmith Infant Neurological Examination) and event-free survival (time to death or the use of permanent assisted ventilation). Secondary end points included overall survival and subgroup analyses of event-free survival according to disease duration at screening. Only the first primary end point was tested in a prespecified interim analysis. To control the overall type I error rate at 0.05, a hierarchical testing strategy was used for the second primary end point and the secondary end points in the final analysis.[1]
References

[1]. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med. 2017 Nov 2;377(18):1723-1732.

[2]. NCALD Antisense Oligonucleotide Therapy in Addition to Nusinersen further Ameliorates Spinal Muscular Atrophy in Mice. Am J Hum Genet. 2019 Jul 3;105(1):221-230.

Additional Infomation
See also: Nusinersen (annotation moved to).
Drug Indication
Spinraza is indicated for the treatment of 5q Spinal Muscular Atrophy.
Therefore, additional SMN-independent approaches allowing life-long maintenance of motoneurons and NMJ function are needed. The advantage of this system is that both genes (SMN and NCALD) will be targeted by the same system: an ASO approach. We accomplish NCALD downregulation (more than 70% of protein levels) in the targeted tissues by a specific Ncald-ASO administration in P2 mice via i.c.v. injection. However, the Ncald MOE gapmer ASOs used to downregulate the RNA in comparison to the SMN MOE ASOs (nusinersen) that restores SMN2 splicing were less metabolically stable. While the SMN-ASOs are very stable upon subcutaneous injection and have a positive effect in liver even after 6 months,31 the duration of the effect of the Ncald-ASO3 was highly efficient for about 1 month but disappeared after 3 months. This suggests that a monthly reinjection or further designs to optimize duration of action needs to be considered. Our findings provide the proof of concept that NCALD-mediated ASO downregulation in CNS is possible and demonstrate that Ncald-ASO3 can ameliorate SMA pathology and motoric dysfunction upon a single presymptomatic injection in neonatal animals. Although NCALD protein and its repressor role is gradually downregulated in spinal cord from P4 to 10 months, it still could be that a repetitively monthly i.c.v. bolus injection of the Ncald-ASO3 in the first few months could further enhance the positive impact, resembling the effect of the genetically modified SMA-Ncaldko/wt mice.22 A future perspective of the present study is to design ASOs against human NCALD and analyze the effect in cultured motoneurons derived from human iPSC, which then might be used to treat SMA-affected individuals. Finally, this work illustrates how a modifying gene uncovered in some asymptomatic individuals contributes to development of a therapy for all SMA-affected individuals.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C234H340N61O128P17S17
Molecular Weight
7127.1942691803
Exact Mass
7124.282
CAS #
1258984-36-9
PubChem CID
131801471
Appearance
White to off-white solid powder
LogP
-13.7
Hydrogen Bond Donor Count
40
Hydrogen Bond Acceptor Count
167
Rotatable Bond Count
176
Heavy Atom Count
457
Complexity
19100
Defined Atom Stereocenter Count
72
SMILES
S=P(O)(OC[C@@H]1[C@H]([C@H]([C@H](N2C=NC3C(N)=NC=NC2=3)O1)OCCOC)OP(O)(OC[C@@H]1[C@H]([C@H]([C@H](N2C(NC(C(C)=C2)=O)=O)O1)OCCOC)OP(O)(OC[C@@H]1[C@H]([C@H]([C@H](N2C=NC3C(NC(N)=NC2=3)=O)O1)OCCOC)OP(O)(OC[C@@H]1[C@H]([C@H]([C@H](N2C(N=C(C(C)=C2)N)=O)O1)OCCOC)OP(O)(OC[C@@H]1[C@H]([C@H]([C@H](N2C(NC(C(C)=C2)=O)=O)O1)OCCOC)OP(O)(OC[C@@H]1[C@H]([C@H]([C@H](N2C=NC3C(NC(N)=NC2=3)=O)O1)OCCOC)OP(O)(OC[C@@H]1[C@H]([C@H]([C@H](N2C=NC3C(NC(N)=NC2=3)=O)O1)OCCOC)O)=S)=S)=S)=S)=S)=S)O[C@@H]1[C@@H](COP(O)(O[C@@H]2[C@@H](COP(O)(O[C@@H]3[C@@H](COP(O)(O[C@@H]4[C@@H](COP(O)(O[C@@H]5[C@@H](COP(O)(O[C@@H]6[C@@H](COP(O)(O[C@@H]7[C@@H](COP(O)(O[C@@H]8[C@@H](COP(O)(O[C@@H]9[C@@H](COP(O)(O[C@@H]%10[C@@H](COP(O)(O[C@@H]%11[C@@H](CO)O[C@H]([C@@H]%11OCCOC)N%11C(NC(C(C)=C%11)=O)=O)=S)O[C@H]([C@@H]%10OCCOC)N%10C(N=C(C(C)=C%10)N)=O)=S)O[C@H]([C@@H]9OCCOC)N9C=NC%10C(N)=NC=NC9=%10)=S)O[C@H]([C@@H]8OCCOC)N8C(N=C(C(C)=C8)N)=O)=S)O[C@H]([C@@H]7OCCOC)N7C(NC(C(C)=C7)=O)=O)=S)O[C@H]([C@@H]6OCCOC)N6C(NC(C(C)=C6)=O)=O)=S)O[C@H]([C@@H]5OCCOC)N5C(NC(C(C)=C5)=O)=O)=S)O[C@H]([C@@H]4OCCOC)N4C(N=C(C(C)=C4)N)=O)=S)O[C@H]([C@@H]3OCCOC)N3C=NC4C(N)=NC=NC3=4)=S)O[C@H]([C@@H]2OCCOC)N2C(NC(C(C)=C2)=O)=O)=S)O[C@H]([C@@H]1OCCOC)N1C=NC2C(N)=NC=NC1=2
InChi Key
WWFDJIVIDXJAQR-FFWSQMGZSA-N
InChi Code
InChI=1S/C234H340N61O128P17S17/c1-106-66-278(224(308)261-178(106)235)205-162(356-50-32-338-14)144(119(391-205)79-373-425(320,442)407-143-117(77-296)389-204(161(143)355-49-31-337-13)282-70-110(5)193(298)271-228(282)312)410-431(326,448)383-89-129-154(172(366-60-42-348-24)215(401-129)289-99-254-135-182(239)246-95-250-186(135)289)419-436(331,453)379-81-121-145(163(357-51-33-339-15)206(393-121)279-67-107(2)179(236)262-225(279)309)408-426(321,443)375-83-123-149(167(361-55-37-343-19)210(395-123)284-72-112(7)195(300)273-230(284)314)413-429(324,446)378-86-125-150(168(362-56-38-344-20)211(397-125)285-73-113(8)196(301)274-231(285)315)414-430(325,447)377-85-124-148(166(360-54-36-342-18)209(396-124)283-71-111(6)194(299)272-229(283)313)412-428(323,445)374-80-120-147(165(359-53-35-341-17)208(392-120)281-69-109(4)181(238)264-227(281)311)411-432(327,449)384-90-130-155(173(367-61-43-349-25)216(402-130)290-100-255-136-183(240)247-96-251-187(136)290)420-437(332,454)381-87-127-152(170(364-58-40-346-22)213(399-127)287-75-115(10)198(303)276-233(287)317)415-433(328,450)385-91-131-157(175(369-63-45-351-27)218(403-131)292-102-257-138-185(242)249-98-253-189(138)292)422-440(335,457)386-92-132-156(174(368-62-44-350-26)217(404-132)291-101-256-137-184(241)248-97-252-188(137)291)421-438(333,455)382-88-128-153(171(365-59-41-347-23)214(400-128)288-76-116(11)199(304)277-234(288)318)417-435(330,452)388-94-134-159(177(371-65-47-353-29)220(406-134)295-105-260-141-192(295)267-223(245)270-202(141)307)423-439(334,456)380-82-122-146(164(358-52-34-340-16)207(394-122)280-68-108(3)180(237)263-226(280)310)409-427(322,444)376-84-126-151(169(363-57-39-345-21)212(398-126)286-74-114(9)197(302)275-232(286)316)416-434(329,451)387-93-133-158(176(370-64-46-352-28)219(405-133)294-104-259-140-191(294)266-222(244)269-201(140)306)418-424(319,441)372-78-118-142(297)160(354-48-30-336-12)203(390-118)293-103-258-139-190(293)265-221(243)268-200(139)305/h66-76,95-105,117-134,142-177,203-220,296-297H,30-65,77-94H2,1-29H3,(H,319,441)(H,320,442)(H,321,443)(H,322,444)(H,323,445)(H,324,446)(H,325,447)(H,326,448)(H,327,449)(H,328,450)(H,329,451)(H,330,452)(H,331,453)(H,332,454)(H,333,455)(H,334,456)(H,335,457)(H2,235,261,308)(H2,236,262,309)(H2,237,263,310)(H2,238,264,311)(H2,239,246,250)(H2,240,247,251)(H2,241,248,252)(H2,242,249,253)(H,271,298,312)(H,272,299,313)(H,273,300,314)(H,274,301,315)(H,275,302,316)(H,276,303,317)(H,277,304,318)(H3,243,265,268,305)(H3,244,266,269,306)(H3,245,267,270,307)/t117-,118-,119-,120-,121-,122-,123-,124-,125-,126-,127-,128-,129-,130-,131-,132-,133-,134-,142-,143-,144-,145-,146-,147-,148-,149-,150-,151-,152-,153-,154-,155-,156-,157-,158-,159-,160-,161-,162-,163-,164-,165-,166-,167-,168-,169-,170-,171-,172-,173-,174-,175-,176-,177-,203-,204-,205-,206-,207-,208-,209-,210-,211-,212-,213-,214-,215-,216-,217-,218-,219-,220-,424?,425?,426?,427?,428?,429?,430?,431?,432?,433?,434?,435?,436?,437?,438?,439?,440?/m1/s1
Chemical Name
1-[(2R,3R,4R,5R)-4-[[(2R,3R,4R,5R)-5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[(2R,3R,4R,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxy-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(2-amino-6-oxo-1H-purin-9-yl)-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(6-aminopurin-9-yl)-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(6-aminopurin-9-yl)-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(6-aminopurin-9-yl)-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(6-aminopurin-9-yl)-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(hydroxymethyl)-3-(2-methoxyethoxy)oxolan-2-yl]-5-methylpyrimidine-2,4-dione
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.1403 mL 0.7015 mL 1.4031 mL
5 mM 0.0281 mL 0.1403 mL 0.2806 mL
10 mM 0.0140 mL 0.0702 mL 0.1403 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Study of the Functional Effects of Nusinersen in 5q-spinal Muscular Amyotrophy Adults (SMA Type 2 or 3 Forms)
CTID: NCT04576494
Phase: N/A
Status: Completed
Date: 2024-12-04
A Study for Participants With Spinal Muscular Atrophy (SMA) Who Previously Participated in Nusinersen (ISIS 396443) Investigational Studies
CTID: NCT02594124
Phase: Phase 3
Status: Completed
Date: 2024-10-22
Extension Study of Nusinersen (BIIB058) in Participants With Spinal Muscular Atrophy Who Previously Participated in a Study With Nusinersen
CTID: NCT04729907
Phase: Phase 3
Status: Active, not recruiting
Date: 2024-09-19
A Study to Find Out How Nusinersen is Processed in the Body When Given Through the ThecaFlex DRx™ System in Adult and Pediatric Participants With Spinal Muscular Atrophy (PIERRE-PK)
CTID: NCT06555419
Phase: Phase 1
Status: Not yet recruiting
Date: 2024-08-15
Study of Nusinersen (BIIB058) in Participants With Spinal Muscular Atrophy
CTID: NCT04089566
Phase: Phase 3
Status: Completed
Date: 2024-07-23
Contact Us