Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
Other Sizes |
|
Nusinersen (Spinraza) is an FDA-approved medication used in the treatment of spinal muscular atrophy, a rare neuromuscular disorder. It is an antisense oligo(ribo)nucleotide (ASO) that is able to induce survival of motor neuron (SMN) expression. In December 2016, it became the first approved drug used in treating this disorder. Nusinersen cost US$750,000 in the first year and US$375,000 annually after that in the United States as of 2019.
Targets |
SMN2 gene
|
---|---|
ln Vitro |
By inhibiting the intronic splicing silencer in SMN2, the SMN-ASO nusinersen raises SMN levels and facilitates the inclusion of exon 7 and the production of FL-SMN2 transcripts [2].
|
ln Vivo |
In the interim analysis, a significantly higher percentage of infants in the nusinersen group than in the control group had a motor-milestone response (21 of 51 infants [41%] vs. 0 of 27 [0%], P<0.001), and this result prompted early termination of the trial. In the final analysis, a significantly higher percentage of infants in the nusinersen group than in the control group had a motor-milestone response (37 of 73 infants [51%] vs. 0 of 37 [0%]), and the likelihood of event-free survival was higher in the nusinersen group than in the control group (hazard ratio for death or the use of permanent assisted ventilation, 0.53; P=0.005). The likelihood of overall survival was higher in the nusinersen group than in the control group (hazard ratio for death, 0.37; P=0.004), and infants with a shorter disease duration at screening were more likely than those with a longer disease duration to benefit from nusinersen. The incidence and severity of adverse events were similar in the two groups.
Conclusions: Among infants with spinal muscular atrophy, those who received nusinersen were more likely to be alive and have improvements in motor function than those in the control group. Early treatment may be necessary to maximize the benefit of the drug. (Funded by Biogen and Ionis Pharmaceuticals; ENDEAR ClinicalTrials.gov number, NCT02193074 .).[1]
pinal muscular atrophy (SMA) is a neuromuscular disease causing the most frequent genetic childhood lethality. Recently, nusinersen, an antisense oligonucleotide (ASO) that corrects SMN2 splicing and thereby increases full-length SMN protein, has been approved by the FDA and EMA for SMA therapy. However, the administration of nusinersen in severe and/or post-symptomatic SMA-affected individuals is insufficient to counteract the disease. Therefore, additional SMN-independent therapies are needed to support the function of motoneurons and neuromuscular junctions. We recently identified asymptomatic SMN1-deleted individuals who were protected against SMA by reduced expression of neurocalcin delta (NCALD). NCALD reduction is proven to be a protective modifier of SMA across species, including worm, zebrafish, and mice. Here, we identified Ncald-ASO3-out of 450 developed Ncald ASOs-as the most efficient and non-toxic ASO for the CNS, by applying a stepwise screening strategy in cortical neurons and adult and neonatal mice. In a randomized-blinded preclinical study, a single subcutaneous low-dose SMN-ASO and a single intracerebroventricular Ncald-ASO3 or control-ASO injection were presymptomatically administered in a severe SMA mouse model. NCALD reduction of >70% persisted for about 1 month. While low-dose SMN-ASO rescues multiorgan impairment, additional NCALD reduction significantly ameliorated SMA pathology including electrophysiological and histological properties of neuromuscular junctions and muscle at P21 and motoric deficits at 3 months. The present study shows the additional benefit of a combinatorial SMN-dependent and SMN-independent ASO-based therapy for SMA. This work illustrates how a modifying gene, identified in some asymptomatic individuals, helps to develop a therapy for all SMA-affected individuals.[2] |
Animal Protocol |
Background: Spinal muscular atrophy is an autosomal recessive neuromuscular disorder that is caused by an insufficient level of survival motor neuron (SMN) protein. Nusinersen is an antisense oligonucleotide drug that modifies pre-messenger RNA splicing of the SMN2 gene and thus promotes increased production of full-length SMN protein.
Methods: We conducted a randomized, double-blind, sham-controlled, phase 3 efficacy and safety trial of nusinersen in infants with spinal muscular atrophy. The primary end points were a motor-milestone response (defined according to results on the Hammersmith Infant Neurological Examination) and event-free survival (time to death or the use of permanent assisted ventilation). Secondary end points included overall survival and subgroup analyses of event-free survival according to disease duration at screening. Only the first primary end point was tested in a prespecified interim analysis. To control the overall type I error rate at 0.05, a hierarchical testing strategy was used for the second primary end point and the secondary end points in the final analysis.[1]
|
References | |
Additional Infomation |
See also: Nusinersen (annotation moved to).
Drug Indication Spinraza is indicated for the treatment of 5q Spinal Muscular Atrophy. Therefore, additional SMN-independent approaches allowing life-long maintenance of motoneurons and NMJ function are needed. The advantage of this system is that both genes (SMN and NCALD) will be targeted by the same system: an ASO approach. We accomplish NCALD downregulation (more than 70% of protein levels) in the targeted tissues by a specific Ncald-ASO administration in P2 mice via i.c.v. injection. However, the Ncald MOE gapmer ASOs used to downregulate the RNA in comparison to the SMN MOE ASOs (nusinersen) that restores SMN2 splicing were less metabolically stable. While the SMN-ASOs are very stable upon subcutaneous injection and have a positive effect in liver even after 6 months,31 the duration of the effect of the Ncald-ASO3 was highly efficient for about 1 month but disappeared after 3 months. This suggests that a monthly reinjection or further designs to optimize duration of action needs to be considered. Our findings provide the proof of concept that NCALD-mediated ASO downregulation in CNS is possible and demonstrate that Ncald-ASO3 can ameliorate SMA pathology and motoric dysfunction upon a single presymptomatic injection in neonatal animals. Although NCALD protein and its repressor role is gradually downregulated in spinal cord from P4 to 10 months, it still could be that a repetitively monthly i.c.v. bolus injection of the Ncald-ASO3 in the first few months could further enhance the positive impact, resembling the effect of the genetically modified SMA-Ncaldko/wt mice.22 A future perspective of the present study is to design ASOs against human NCALD and analyze the effect in cultured motoneurons derived from human iPSC, which then might be used to treat SMA-affected individuals. Finally, this work illustrates how a modifying gene uncovered in some asymptomatic individuals contributes to development of a therapy for all SMA-affected individuals.[2] |
Molecular Formula |
C234H340N61O128P17S17
|
---|---|
Molecular Weight |
7127.1942691803
|
Exact Mass |
7124.282
|
CAS # |
1258984-36-9
|
PubChem CID |
131801471
|
Appearance |
White to off-white solid powder
|
LogP |
-13.7
|
Hydrogen Bond Donor Count |
40
|
Hydrogen Bond Acceptor Count |
167
|
Rotatable Bond Count |
176
|
Heavy Atom Count |
457
|
Complexity |
19100
|
Defined Atom Stereocenter Count |
72
|
SMILES |
S=P(O)(OC[C@@H]1[C@H]([C@H]([C@H](N2C=NC3C(N)=NC=NC2=3)O1)OCCOC)OP(O)(OC[C@@H]1[C@H]([C@H]([C@H](N2C(NC(C(C)=C2)=O)=O)O1)OCCOC)OP(O)(OC[C@@H]1[C@H]([C@H]([C@H](N2C=NC3C(NC(N)=NC2=3)=O)O1)OCCOC)OP(O)(OC[C@@H]1[C@H]([C@H]([C@H](N2C(N=C(C(C)=C2)N)=O)O1)OCCOC)OP(O)(OC[C@@H]1[C@H]([C@H]([C@H](N2C(NC(C(C)=C2)=O)=O)O1)OCCOC)OP(O)(OC[C@@H]1[C@H]([C@H]([C@H](N2C=NC3C(NC(N)=NC2=3)=O)O1)OCCOC)OP(O)(OC[C@@H]1[C@H]([C@H]([C@H](N2C=NC3C(NC(N)=NC2=3)=O)O1)OCCOC)O)=S)=S)=S)=S)=S)=S)O[C@@H]1[C@@H](COP(O)(O[C@@H]2[C@@H](COP(O)(O[C@@H]3[C@@H](COP(O)(O[C@@H]4[C@@H](COP(O)(O[C@@H]5[C@@H](COP(O)(O[C@@H]6[C@@H](COP(O)(O[C@@H]7[C@@H](COP(O)(O[C@@H]8[C@@H](COP(O)(O[C@@H]9[C@@H](COP(O)(O[C@@H]%10[C@@H](COP(O)(O[C@@H]%11[C@@H](CO)O[C@H]([C@@H]%11OCCOC)N%11C(NC(C(C)=C%11)=O)=O)=S)O[C@H]([C@@H]%10OCCOC)N%10C(N=C(C(C)=C%10)N)=O)=S)O[C@H]([C@@H]9OCCOC)N9C=NC%10C(N)=NC=NC9=%10)=S)O[C@H]([C@@H]8OCCOC)N8C(N=C(C(C)=C8)N)=O)=S)O[C@H]([C@@H]7OCCOC)N7C(NC(C(C)=C7)=O)=O)=S)O[C@H]([C@@H]6OCCOC)N6C(NC(C(C)=C6)=O)=O)=S)O[C@H]([C@@H]5OCCOC)N5C(NC(C(C)=C5)=O)=O)=S)O[C@H]([C@@H]4OCCOC)N4C(N=C(C(C)=C4)N)=O)=S)O[C@H]([C@@H]3OCCOC)N3C=NC4C(N)=NC=NC3=4)=S)O[C@H]([C@@H]2OCCOC)N2C(NC(C(C)=C2)=O)=O)=S)O[C@H]([C@@H]1OCCOC)N1C=NC2C(N)=NC=NC1=2
|
InChi Key |
WWFDJIVIDXJAQR-FFWSQMGZSA-N
|
InChi Code |
InChI=1S/C234H340N61O128P17S17/c1-106-66-278(224(308)261-178(106)235)205-162(356-50-32-338-14)144(119(391-205)79-373-425(320,442)407-143-117(77-296)389-204(161(143)355-49-31-337-13)282-70-110(5)193(298)271-228(282)312)410-431(326,448)383-89-129-154(172(366-60-42-348-24)215(401-129)289-99-254-135-182(239)246-95-250-186(135)289)419-436(331,453)379-81-121-145(163(357-51-33-339-15)206(393-121)279-67-107(2)179(236)262-225(279)309)408-426(321,443)375-83-123-149(167(361-55-37-343-19)210(395-123)284-72-112(7)195(300)273-230(284)314)413-429(324,446)378-86-125-150(168(362-56-38-344-20)211(397-125)285-73-113(8)196(301)274-231(285)315)414-430(325,447)377-85-124-148(166(360-54-36-342-18)209(396-124)283-71-111(6)194(299)272-229(283)313)412-428(323,445)374-80-120-147(165(359-53-35-341-17)208(392-120)281-69-109(4)181(238)264-227(281)311)411-432(327,449)384-90-130-155(173(367-61-43-349-25)216(402-130)290-100-255-136-183(240)247-96-251-187(136)290)420-437(332,454)381-87-127-152(170(364-58-40-346-22)213(399-127)287-75-115(10)198(303)276-233(287)317)415-433(328,450)385-91-131-157(175(369-63-45-351-27)218(403-131)292-102-257-138-185(242)249-98-253-189(138)292)422-440(335,457)386-92-132-156(174(368-62-44-350-26)217(404-132)291-101-256-137-184(241)248-97-252-188(137)291)421-438(333,455)382-88-128-153(171(365-59-41-347-23)214(400-128)288-76-116(11)199(304)277-234(288)318)417-435(330,452)388-94-134-159(177(371-65-47-353-29)220(406-134)295-105-260-141-192(295)267-223(245)270-202(141)307)423-439(334,456)380-82-122-146(164(358-52-34-340-16)207(394-122)280-68-108(3)180(237)263-226(280)310)409-427(322,444)376-84-126-151(169(363-57-39-345-21)212(398-126)286-74-114(9)197(302)275-232(286)316)416-434(329,451)387-93-133-158(176(370-64-46-352-28)219(405-133)294-104-259-140-191(294)266-222(244)269-201(140)306)418-424(319,441)372-78-118-142(297)160(354-48-30-336-12)203(390-118)293-103-258-139-190(293)265-221(243)268-200(139)305/h66-76,95-105,117-134,142-177,203-220,296-297H,30-65,77-94H2,1-29H3,(H,319,441)(H,320,442)(H,321,443)(H,322,444)(H,323,445)(H,324,446)(H,325,447)(H,326,448)(H,327,449)(H,328,450)(H,329,451)(H,330,452)(H,331,453)(H,332,454)(H,333,455)(H,334,456)(H,335,457)(H2,235,261,308)(H2,236,262,309)(H2,237,263,310)(H2,238,264,311)(H2,239,246,250)(H2,240,247,251)(H2,241,248,252)(H2,242,249,253)(H,271,298,312)(H,272,299,313)(H,273,300,314)(H,274,301,315)(H,275,302,316)(H,276,303,317)(H,277,304,318)(H3,243,265,268,305)(H3,244,266,269,306)(H3,245,267,270,307)/t117-,118-,119-,120-,121-,122-,123-,124-,125-,126-,127-,128-,129-,130-,131-,132-,133-,134-,142-,143-,144-,145-,146-,147-,148-,149-,150-,151-,152-,153-,154-,155-,156-,157-,158-,159-,160-,161-,162-,163-,164-,165-,166-,167-,168-,169-,170-,171-,172-,173-,174-,175-,176-,177-,203-,204-,205-,206-,207-,208-,209-,210-,211-,212-,213-,214-,215-,216-,217-,218-,219-,220-,424?,425?,426?,427?,428?,429?,430?,431?,432?,433?,434?,435?,436?,437?,438?,439?,440?/m1/s1
|
Chemical Name |
1-[(2R,3R,4R,5R)-4-[[(2R,3R,4R,5R)-5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[(2R,3R,4R,5R)-3-[[(2R,3R,4R,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[(2R,3R,4R,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxy-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(2-amino-6-oxo-1H-purin-9-yl)-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(6-aminopurin-9-yl)-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(6-aminopurin-9-yl)-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(6-aminopurin-9-yl)-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(6-aminopurin-9-yl)-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-4-(2-methoxyethoxy)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(hydroxymethyl)-3-(2-methoxyethoxy)oxolan-2-yl]-5-methylpyrimidine-2,4-dione
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 0.1403 mL | 0.7015 mL | 1.4031 mL | |
5 mM | 0.0281 mL | 0.1403 mL | 0.2806 mL | |
10 mM | 0.0140 mL | 0.0702 mL | 0.1403 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.