yingweiwo

Olesoxime (TRO-19622)

Alias: E/Z-olesoxime; NSC 21311; NSC-21311; NSC21311; TRO-19622; TRO19622; TRO19622; RG6083; RG 6083; RG-6083;Olesoxime; Olesoxime, Z-; 22033-87-0; UNII-I2QN18P645; I2QN18P645; 66514-00-9; TRO 19622; (NE/Z)-N-[(8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-ylidene]hydroxylamine;
Cat No.:V5150 Purity: =99.62%
Olesoxime (formerly known as TRO 19622; RG-6083) is a mitochondrial-targeted neuroprotective agent with EC50value for increasing cell survival is 3.2±0.2 µM.
Olesoxime (TRO-19622)
Olesoxime (TRO-19622) Chemical Structure CAS No.: 22033-87-0
Product category: Mitochondrial Metabolism
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: =99.62%

Product Description

Olesoxime (E/Z-olesoxime; formerly known as TRO 19622; RG-6083) is a mitochondrial-targeted neuroprotective agent with EC50 value for increasing cell survival is 3.2±0.2 µM. Olesoxime, with a cholesterol-like structure, displays neuroprotective properties in preclinical studies, it has been demonstrated that the compound promotes the function and survival of neurons and other cell types under disease-relevant stress conditions through interactions with the mitochondrial permeability transition pore (mPTP).

Biological Activity I Assay Protocols (From Reference)
Targets
Mitochondrial; neuroprotective
ln Vitro
After being treated without neurotrophic factors derived from the brain, ciliary body, or glia, primary embryonic rat spinal MN were significantly protected against cell damage and death by exposure to Olesoxime (TRO 19622) at concentrations ranging from 0.1 to 10 µM one hour after inoculation. This protection persisted for three days in culture. Olesoxime (TRO 19622), at a concentration of 10 µM, sustains 74±10% neuronal survival by the action of a mixture of neurotrophic factors, including those produced from the brain, ciliary bodies, and glial cells. In this test, the average EC50 was 3.2±0.2 µM. Olesoxime (TRO 19622) not only shields MN cell bodies but also encourages neurite development. At a 1 µM concentration, olesoxime (TRO 19622) only slightly improved cell viability but significantly boosted neurite development per cell by 54% [1]. A novel class of cholesterol oximes known as olesoxime (TRO 19622) was discovered due to its ability to increase the survival of pure motor neurons in the absence of neurotrophic factors. Olesoxime (TRO 19622) selectively targets proteins in the outer membrane of the mitochondria, focusing on the mitochondria and inhibiting oxidative stress-mediated permeability transition pore opening, among other processes[2].
ln Vivo
Adult mice receiving daily subcutaneous injections of Olesoxime (TRO 19622) (3 or 30 mg/kg) for more than two months was well tolerated without toxicity or adverse effects [1]. Olesoxime (TRO 19622) increased motor neuron cell body survival in a dose-dependent manner when animals were treated orally for five days post-lesion; at this dose, motor neuron survival was 29 ±2% (n=18), a 42% increase in survival compared to vehicle-treated animals [3]. Paclitaxel-treated rats receiving prophylactic treatment with 3 mg/kg/d or 30 mg/kg/d Olesoxime (TRO 19622) had 239±17.6 and 247±14.4 IENF/cm, respectively. For both doses, the decrease was significantly smaller than the 46% seen in vehicle-administered paclitaxel-treated rats.
Enzyme Assay
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive death of cortical and spinal motor neurons, for which there is no effective treatment. Using a cell-based assay for compounds capable of preventing motor neuron cell death in vitro, a collection of approximately 40,000 low-molecular-weight compounds was screened to identify potential small-molecule therapeutics. We report the identification of cholest-4-en-3-one, oxime (TRO19622) as a potential drug candidate for the treatment of ALS. In vitro, TRO19622 promoted motor neuron survival in the absence of trophic support in a dose-dependent manner[3].
Animal Protocol
In vivo, TRO19622 rescued motor neurons from axotomy-induced cell death in neonatal rats and promoted nerve regeneration following sciatic nerve crush in mice. In SOD1G93A transgenic mice, a model of familial ALS, TRO19622 treatment improved motor performance, delayed the onset of the clinical disease, and extended survival. TRO19622 bound directly to two components of the mitochondrial permeability transition pore: the voltage-dependent anion channel and the translocator protein 18 kDa (or peripheral benzodiazepine receptor), suggesting a potential mechanism for its neuroprotective activity. TRO19622 may have therapeutic potential for ALS and other motor neuron and neurodegenerative diseases[3].
References

[1]. Olesoxime, a cholesterol-like neuroprotectant for the potential treatment of amyotrophic lateral sclerosis. IDrugs. 2010 Aug;13(8):568-80.

[2]. Olesoxime (TRO19622): A Novel Mitochondrial-Targeted Neuroprotective Compound. Pharmaceuticals (Basel). 2010 Jan 28;3(2):345-368.

[3]. Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J Pharmacol Exp Ther. 2007 Aug;322(2):709-20.

[4]. Olesoxime (cholest-4-en-3-one, oxime): analgesic and neuroprotective effects in a rat model of painful peripheral neuropathy produced by the chemotherapeutic agent, paclitaxel. Pain. 2009 Dec 15;147(1-3):202-9.

Additional Infomation
Olesoxime is a cholesterol-like small molecule that has demonstrated a remarkable neuroprotective profile in a battery of both in vitro and in vivo preclinical models. For example, it has demonstrated the ability to prevent neurodegeneration, enhance nerve function and accelerate neuroregeneration following nerve trauma.
Drug Indication
Investigated for use/treatment in neurologic disorders.
Treatment of spinal muscular atrophy
Mechanism of Action
Olesoxime interacts with a physiologically relevant target: the mitochondrial permeability transition pore (mPTP). Mitochondria are central mediators of cell death and are implicated in most if not all neurodegenerative diseases regardless of the initiating factor: genetic mutations, excitotoxicity, reactive oxygen species, ischemia, chemical toxicity, etc. Mitochondria play diverse roles in all cells. In neurons, especially near synaptic sites, mitochondria are essential calcium-buffering organelles in areas where membrane excitability leads to large influx of calcium through calcium channels. Mitochondria also produce the ATP necessary for microtubule-based axoplasmic transport and maintaining the activity of ion and nutrient transporters. If a neuron fails to establish or maintain its functional role, mitochondria are responsible for eliminating it by releasing apoptotic factors. Olesoxime, by interacting with protein components of the mPTP, prevents the release of these apoptotic factors and therefore protects the neuron. This mechanism of action may lead to a general neuroprotective activity with utility in other therapeutic indications.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C27H45NO
Molecular Weight
399.6523
Exact Mass
399.35
Elemental Analysis
C, 81.14; H, 11.35; N, 3.50; O, 4.00
CAS #
22033-87-0
PubChem CID
76971721
Appearance
Typically exists as white to off-white solids at room temperature
Density
1.1
Boiling Point
510ºC at 760mmHg
Melting Point
145-148ºC
Flash Point
341ºC
Vapour Pressure
1.56E-12mmHg at 25°C
Index of Refraction
1.583
LogP
7.858
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
5
Heavy Atom Count
29
Complexity
663
Defined Atom Stereocenter Count
7
SMILES
C[C@@]12C(CC[C@]3([H])[C@]2([H])CC[C@@]4(C)[C@@]3([H])CC[C@@]4([C@]([H])(C)CCCC(C)C)[H])=CC(CC1)=NO
InChi Key
QNTASHOAVRSLMD-SIWSWZRQSA-N
InChi Code
InChI=1S/C27H45NO/c1-18(2)7-6-8-19(3)23-11-12-24-22-10-9-20-17-21(28-29)13-15-26(20,4)25(22)14-16-27(23,24)5/h17-19,22-25,29H,6-16H2,1-5H3/b28-21+/t19-,22+,23-,24+,25+,26+,27-/m1/s1
Chemical Name
(8S,9S,10R,13R,14S,17R,E/Z)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one oxime
Synonyms
E/Z-olesoxime; NSC 21311; NSC-21311; NSC21311; TRO-19622; TRO19622; TRO19622; RG6083; RG 6083; RG-6083;Olesoxime; Olesoxime, Z-; 22033-87-0; UNII-I2QN18P645; I2QN18P645; 66514-00-9; TRO 19622; (NE/Z)-N-[(8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-ylidene]hydroxylamine;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~50 mg/mL (~125.11 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (6.26 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (6.26 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (6.26 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.5022 mL 12.5109 mL 25.0219 mL
5 mM 0.5004 mL 2.5022 mL 5.0044 mL
10 mM 0.2502 mL 1.2511 mL 2.5022 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us