yingweiwo

Oxytocin acetate

Alias: Orasthin; Oxystin; Ossitocina; Pitocin; Oxoject; Piton S; Ossitocina; Oxetakain; Oxitocina; Partocon; Oxt; Oxytocin.
Cat No.:V8981 Purity: ≥98%
Oxytocin (α-Hypophamine) acetate is a pleiotropic hypothalamic peptide that aids in labor, lactation, and prosocial behavior.
Oxytocin acetate
Oxytocin acetate Chemical Structure CAS No.: 6233-83-6
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
50mg
100mg
500mg
Other Sizes

Other Forms of Oxytocin acetate:

  • Oxytocin
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Oxytocin (α-Hypophamine) acetate is a pleiotropic hypothalamic peptide that aids in labor, lactation, and prosocial behavior. Oxytocin acetate works as a stress response molecule with anti~inflammatory, antioxidant and protective effects, especially in the face of adversity or trauma.
Biological Activity I Assay Protocols (From Reference)
Targets
Endogenous Metabolite
ln Vitro
Oxytocin is a pleiotropic, peptide hormone with broad implications for general health, adaptation, development, reproduction, and social behavior. Endogenous oxytocin and stimulation of the oxytocin receptor support patterns of growth, resilience, and healing. Oxytocin can function as a stress-coping molecule, an anti-inflammatory, and an antioxidant, with protective effects especially in the face of adversity or trauma. Oxytocin influences the autonomic nervous system and the immune system. These properties of oxytocin may help explain the benefits of positive social experiences and have drawn attention to this molecule as a possible therapeutic in a host of disorders. However, as detailed here, the unique chemical properties of oxytocin, including active disulfide bonds, and its capacity to shift chemical forms and bind to other molecules make this molecule difficult to work with and to measure. The effects of oxytocin also are context-dependent, sexually dimorphic, and altered by experience. In part, this is because many of the actions of oxytocin rely on its capacity to interact with the more ancient peptide molecule, vasopressin, and the vasopressin receptors. In addition, oxytocin receptor(s) are epigenetically tuned by experience, especially in early life. Stimulation of G-protein-coupled receptors triggers subcellular cascades allowing these neuropeptides to have multiple functions. The adaptive properties of oxytocin make this ancient molecule of special importance to human evolution as well as modern medicine and health; these same characteristics also present challenges to the use of oxytocin-like molecules as drugs that are only now being recognized. SIGNIFICANCE STATEMENT: Oxytocin is an ancient molecule with a major role in mammalian behavior and health. Although oxytocin has the capacity to act as a "natural medicine" protecting against stress and illness, the unique characteristics of the oxytocin molecule and its receptors and its relationship to a related hormone, vasopressin, have created challenges for its use as a therapeutic drug [2].
ln Vivo
causing a decrease in core body temperature during the LMA task due to cognitive loss. Significantly more hypothermia was caused by subcutaneous injection of oxytocin acetate (0.1 mg/kg–0.3 mg/kg; single dose) than by oxytocin acetate (0.3 mg/kg) with saline or twice as much as 0.3 mg/kg oxytocin acetate 15–60 days after injection. While oxytocin acetate (0.1 mg/kg) created noticeably more batches at the 30-minute time point only, the temperature drop that was produced within minutes was much more than that of the excipient. [1] Oxytocin acetate (0.1 mg/kg) produced noticeably greater anogenital and body sniffing than saline. Additionally, it lengthens social engagement time overall (71.6 s)[1].
Enzyme Assay
Analysis of monoamines[1]
Microdialysis samples were analyzed using High Performance Liquid Chromatography with electrochemical detection as described previously. Defrosted samples were kept on ice before injection (15 µl) into a Targa C18 3 µM column (100 × 1.0 m) using a Perkin Elmer Series 200 autosampler. Dopamine, 5-HT and their major metabolites; 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were detected using a mobile phase (20 mM potassium dihydrogen phosphate, 20 mM sodium acetate, 0.1 mM ethylenediaminetetraacetic acid, 0.15 mM octanesulfonic acid, and 10% methanol, pH 3.9) at 0.4 ml/min (Dionex P680 pump), and measured against standards with a DECADE II SDC Detector I and Clarity software using a potential of + 0.75 V. The percentage change from baseline for every microdialysate molecule was calculated for each individual rat. PFC samples were excluded from one rat due to incorrect probe placement and two others because of flow disruption. In one rat NAc dopamine was below the detection limit; n = 6/7 per group in the PFC, and n = 7/8 in the NAc.
Animal Protocol
Animal/Disease Models: 50 - six male Lister-hooded rats (150–200 g) [1]
Doses: 0.1 mg/kg-0.3 mg/kg
Route of Administration: subcutaneous injection; 0.1 mg/kg-0.3 mg/kg; Single dose
Experimental Results: produced Dramatically higher hypothermia (0.3 mg/kg) compared to the saline group.
Dose–response and antagonist studies with oxytocin on core body temperature and locomotor activity[1]
To establish a suitable dose of oxytocin, which would not suppress locomotor activity (LMA) or produce hypothermia during microdialysis studies, rats (n = 12) were tested using a within-subjects design on four occasions at weekly intervals following injection of vehicle and each dose of oxytocin (0.03, 0.1, or 0.3 mg/kg s.c.) in a pseudo-random order to serve as their own control. This range was selected from previous reports showing that oxytocin doses above 0.3 mg/kg s.c. or i.p. suppress spontaneous locomotion in other rat strains so we included lower doses to identify those devoid of this unwanted effect. To establish the relative contribution of oxytocin and vasopressin V1a receptors to hypothermia produced by the highest dose, a further 12 rats received vehicle or oxytocin (0.3 mg/kg s.c.) in the presence and absence of the non-peptide selective V1a receptor antagonist SR49059 (1 mg/kg i.p.) or the selective oxytocin antagonist L-368,899 (2 mg/kg i.p.), on six occasions at weekly intervals (within-subjects design). Although original peptide antagonists for these receptors showed poor stability and selectivity the development of non-peptide antagonists greatly improved pharmacokinetic properties. The current non-peptide antagonists (SR49059 and L-368,889) were selected because they possess the best overall profile of commercially available oxytocin and V1a antagonists; having high affinity, relative selectivity, good BBB penetration, and plasma half-life and are devoid of partial agonist activity. Doses of these brain penetrant antagonists were selected from previous studies showing < 15 min onset and 2–4 h duration in rodents. SR49059 prevented oxytocin-induced pro-social behavior and hypothermia, whereas L-368,899 (which has brain penetration demonstrated by PET studies), prevented anxiolytic effects of oxytocin in the open field, reduced conditioned disgust behavior during social interaction and attenuated sexual motivation in male rats]. The cross-over repeat within-subject design for dose–response and antagonist studies greatly reduced the number of rats required and the inter-individual variation of measurements made in line with the 3 R’s principle.
Doses and routes of administration:
Compounds were dissolved in 0.154 M saline (vehicle also containing 5% dimethyl sulfoxide for the antagonists) and administered at volume of 1 ml/kg subcutaneous (s.c.) (oxytocin)
Effect of oxytocin on PCP-induced hyperactivity, social interaction, and PFC and NAc dopamine and 5-HT efflux[1]
Oxytocin at 0.03 and 0.1 mg/kg were selected for further investigation, as these doses did not produce confounding effects on ambulation and body temperature in dose–response studies described above. A separate group of rats (n = 32, Figure S1) was used to examine the effect of these two doses on PCP-induced hyperactivity, and on the basis of these findings 0.1 mg/kg oxytocin was administered 7 days later, prior to assessment of social interaction and USVs. The following week rats underwent stereotaxic surgery to implant microdialysis probes into the PFC and NAc and after 7 days recovery the effects of oxytocin on dopamine efflux from these brain regions was assessed. One week was left between each of the three protocols (Figure S1) to ensure complete drug wash-out and minimize any carry over effects from the previous procedure.
Locomotor activity[1]
LMA was assessed on a single occasion as described above. Animals received oxytocin or vehicle after 30 min arena habituation, and vehicle or PCP (5.6 mg/kg i.p.; an established dose to examine “antipsychotic-like” activity) 30 min later, resulting in four treatment combinations: vehicle + vehicle, PCP + vehicle, PCP + 0.03 mg/kg oxytocin, PCP + 0.1 mg/kg (n = 8/group; between-subjects design).
References
[1]. Shivali Kohli, et al. Oxytocin attenuates phencyclidine hyperactivity and increases social interaction and nucleus accumben dopamine release in rats. Neuropsychopharmacology. 2019 Jan;44(2):295-305.
[2]. C Sue Carter, et al. Is Oxytocin "Nature's Medicine"? Pharmacol Rev. 2020 Oct;72(4):829-861.
Additional Infomation
The pituitary neuropeptide oxytocin promotes social behavior, and is a potential adjunct therapy for social deficits in schizophrenia and autism. Oxytocin may mediate pro-social effects by modulating monoamine release in limbic and cortical areas, which was investigated herein using in vivo microdialysis, after establishing a dose that did not produce accompanying sedative or thermoregulatory effects that could concomitantly influence behavior. The effects of oxytocin (0.03-0.3 mg/kg subcutaneous) on locomotor activity, core body temperature, and social behavior (social interaction and ultrasonic vocalizations) were examined in adult male Lister-hooded rats, using selective antagonists to determine the role of oxytocin and vasopressin V1a receptors. Dopamine and serotonin efflux in the prefrontal cortex and nucleus accumbens of conscious rats were assessed using microdialysis. 0.3 mg/kg oxytocin modestly reduced activity and caused hypothermia but only the latter was attenuated by the V1a receptor antagonist, SR49059 (1 mg/kg intraperitoneal). Oxytocin at 0.1 mg/kg, which did not alter activity and had little effect on temperature, significantly attenuated phencyclidine-induced hyperactivity and increased social interaction between unfamiliar rats without altering the number or pattern of ultrasonic vocalizations. In the same rats, oxytocin (0.1 mg/kg) selectively elevated dopamine overflow in the nucleus accumbens, but not prefrontal cortex, without influencing serotonin efflux. Systemic oxytocin administration attenuated phencyclidine-induced hyperactivity and increased pro-social behavior without decreasing core body temperature and selectively enhanced nucleus accumbens dopamine release, consistent with activation of mesocorticolimbic circuits regulating associative/reward behavior being involved. This highlights the therapeutic potential of oxytocin to treat social behavioral deficits seen in psychiatric disorders such as schizophrenia.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C43H66N12O12S2.C2H4O2
Molecular Weight
1067.2393
Exact Mass
1066.4576
Elemental Analysis
C, 50.64; H, 6.61; N, 15.75; O, 20.99; S, 6.01
CAS #
6233-83-6
Related CAS #
6233-83-6 (acetate);50-56-6;
PubChem CID
12004215
Sequence
Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2 (Disulfide bridge:Cys1-Cys6)
SequenceShortening
CYIQNCPLG-NH2 (Disulfide bridge:Cys1-Cys6)
Appearance
White to off-white solid powder
Source
Endogenous Metabolite
tPSA
487Ų
SMILES
CC(O)=O.O=C([C@H](CSSC[C@@H](C(N[C@H](C1=O)CC2=CC=C(O)C=C2)=O)N)NC([C@@H](NC([C@@H](NC(C(N1)[C@@H](C)CC)=O)CCC(N)=O)=O)CC(N)=O)=O)N(CCC3)[C@@H]3C(N[C@@H](CC(C)C)C(NCC(N)=O)=O)=O
InChi Key
DSZOEVVLZMNAEH-BXUJZNQYSA-N
InChi Code
InChI=1S/C43H66N12O12S2.C2H4O2/c1-5-22(4)35-42(66)49-26(12-13-32(45)57)38(62)51-29(17-33(46)58)39(63)53-30(20-69-68-19-25(44)36(60)50-28(40(64)54-35)16-23-8-10-24(56)11-9-23)43(67)55-14-6-7-31(55)41(65)52-27(15-21(2)3)37(61)48-18-34(47)59;1-2(3)4/h8-11,21-22,25-31,35,56H,5-7,12-20,44H2,1-4H3,(H2,45,57)(H2,46,58)(H2,47,59)(H,48,61)(H,49,66)(H,50,60)(H,51,62)(H,52,65)(H,53,63)(H,54,64);1H3,(H,3,4)/t22-,25-,26-,27-,28-,29-,30-,31-,35-;/m0./s1
Chemical Name
(S)-N-((S)-1-((2-amino-2-oxoethyl)amino)-4-methyl-1-oxopentan-2-yl)-1-((4R,7S,10S,13S,16S,19R)-19-amino-7-(2-amino-2-oxoethyl)-10-(3-amino-3-oxopropyl)-13-((S)-sec-butyl)-16-(4-hydroxybenzyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentaazacycloicosane-4-carbonyl)pyrrolidine-2-carboxamide acetate
Synonyms
Orasthin; Oxystin; Ossitocina; Pitocin; Oxoject; Piton S; Ossitocina; Oxetakain; Oxitocina; Partocon; Oxt; Oxytocin.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~125 mg/mL (~117.12 mM)
H2O : ~50 mg/mL (~46.85 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 25 mg/mL (23.42 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.9370 mL 4.6850 mL 9.3700 mL
5 mM 0.1874 mL 0.9370 mL 1.8740 mL
10 mM 0.0937 mL 0.4685 mL 0.9370 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us