yingweiwo

Palmitic acid

Alias: NSC5030; NSC-5030; NSC 5030; Palmitic acid
Cat No.:V27078 Purity: ≥98%
Palmitic acid (PA) is a long-chain (16-carbon chain) saturated fatty acid commonly found in both animals and plants.
Palmitic acid
Palmitic acid Chemical Structure CAS No.: 57-10-3
Product category: HSP
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
2g
5g
10g
25g
Other Sizes

Other Forms of Palmitic acid:

  • Palmitic acid sodium
  • Palmitic acid-13C16 sodium
  • Palmitic acid-d4-1
  • Palmitic acid-d31 (palmitic acid d31)
  • Palmitic acid-1-13C (palmitic acid 1-13C)
  • Palmitic acid-d2
  • Palmitic acid-d3
  • Palmitic acid-13C16 (palmitic acid 13C16)
  • Palmitic acid-d4 (palmitic acid d4)
  • Palmitic acid-13C (palmitic acid 13C)
  • Palmitic acid-13C sodium
  • Palmitic acid-1,2,3,4-13C4 (palmitic acid 13C4)
  • Palmitic acid-15,15,16,16,16-d5 (palmitic acid d5)
  • Palmitic acid-13C2 (palmitic acid 13C2)
  • Palmitic acid-d2-1 (palmitic acid d2-1)
  • Palmitic acid-d4-2
  • Palmitic acid-d17
  • Palmitic acid-d2-2
  • Palmitic acid-d2-3
  • Palmitic acid-d2-4
  • Palmitic acid-d1
  • Palmitic acid-d2-5
  • Palmitic acid-d9
  • Palmitic acid-d5
  • Palmitic acid-9,10-d2 (palmitic acid d2)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Palmitic acid (PA) is a long-chain (16-carbon chain) saturated fatty acid commonly found in both animals and plants. It is the most prevalent saturated fatty acid, making up 20–30% of all fatty acids in the human body. It can be produced naturally by the process of de novo lipogenesis (DNL) or obtained through diet. Up to 44% of total fats in the oil extracted from the fruit of oil palms are composed primarily of PA. 50–60% of total fats are found in meats, cheeses, butter, and other dairy products. These foods also contain palmitic acid.

Biological Activity I Assay Protocols (From Reference)
Targets
Microbial Metabolite; Human Endogenous Metabolite
ln Vitro
Palmitic acid (PA) binds to TLR4 through the adaptor protein MD2, and the TLR4 signal that PA produces causes a strong IL-1β response in addition to stimulating dendritic cell activation and maturation. One TLR4/MD-2 ligand is palmitic acid. TLR4 is the mechanism by which it promotes inflammation[1].
ln Vivo
Palmitic acid rapidly decreases mouse locomotor activity in a dose-dependent manner through a mechanism that is dependent on fatty acid chain length rather than TLR4, MyD88, IL-1, IL-6, or TNFα. Mice exposed to palmitic acid exhibit anxiety-like behaviors while their amygdala-based serotonin metabolism is elevated[2].
Cell Assay
The INS-1 cells are seeded at 4,000 cells/well onto 96-well plates with 10% BSA and then incubated for 24 or 48 hours with either T0901317 (10 μmol/L), palmitic acid (250 μmol/L), a combination of T0901317 and palmitic acid, or PBS (mock control). Following the treatment incubation, 20 microliters of MTT solution (5 milligrams per milliliter of MTT in PBS, pH 7.4) are added to each well, and the mixture is then incubated for four hours at 37°C. After the supernatants are extracted from the wells, 15 μl of DMSO per well is added to dissolve the crystals. A microplate reader is used to measure the optical density at a wavelength of 490 nm.
Animal Protocol
C57BL/6J mice
0.3, 3, and 30 μmol/mouse
i.p.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Added (14)C-labeled palmitate was more significantly incorporated into lipid fractions of muscle fibers from fetal and neonatal monkeys than those from adults. /Palmitate/
More (14)C-labeled palmitate was incorporated into lipid by adipose tissue of genetically obese rats than by controls. /Palmitate/
Radioactivity has been traced to the heart, liver, lung, spleen, kidney, muscle, intestine, adrenal, blood, and lymph, and adipose, mucosal, and dental tissues after administration of radioactive oleic, palmitic, or stearic acids.
Fatty acids originating from adipose tissue stores are either bound to serum albumin or remain unesterified in the blood.
For more Absorption, Distribution and Excretion (Complete) data for Palmitic acid (7 total), please visit the HSDB record page.
Metabolism / Metabolites
Palmitic acid is rapidly metabolized, primarily by beta-oxidation. In addition to oxidative breakdown, palmitic acid undergoes a variety of conversion reactions in the liver and intestinal mucosa to stearic, oleic, palmitoleic, and myristic acids. omega-Oxidation, prior to beta-oxidation, may account for 5 to 10% of the hepatic metabolism of palmitic acid in the starved rat. After oxidation or conversion to other long-chain fatty acids or phospholipids, the carbon skeleton of palmitic acid is stored in the form of esterified cholesterol or returned to the plasma, depending upon the nutritional state of the organism.
Proposed mechanisms for fatty acid uptake by different tissues range from passive diffusion to facilitated diffusion or a combination of both. Fatty acids taken up by the tissues can either be stored in the form of triglycerides (98% of which occurs in adipose tissue depots) or they can be oxidized for energy via the beta-oxidation and tricarboxylic acid cycle pathways of catabolism. /Fatty acids/
The beta-oxidation of fatty acids occurs in most vertebrate tissues (except the brain) using an enzyme complex for the series of oxidation and hydration reactions resulting in the cleavage of acetate groups as acetyl-CoA (coenzyme A). An additional isomerization reaction is required for the complete catabolism of oleic acid. Alternate oxidation pathways can be found in the liver (omega-oxidation) and in the brain (alpha-oxidation). /fatty acids/
Fatty acid biosynthesis from acetyl-CoA takes place primarily in the liver, adipose tissue, and mammary glands of higher animals. Successive reduction and dehydration reactions yield saturated fatty acids up to a 16-carbon chain length. /Fatty acids/
Palmitic acid has known human metabolites that include 15-Hydroxy-hexadecanoic acid.
Toxicity/Toxicokinetics
Toxicity Summary
IDENTIFICATION AND USE: Palmitic acid is a solid. It is one of the most common fatty acids, which occurs in natural fats and oils. It is used as soap and cosmetics agent. It is also used in manufacture of metallic palmitates, lube oils, waterproofing, and food-grade additives. HUMAN STUDIES: Palmitic acid was a mild irritant when applied to human skin (75 mg total over 3 days). The excess of saturated free fatty acids, such as palmitic acid, that induces lipotoxicity in hepatocytes, has been implicated in the development of non-alcoholic fatty liver disease also associated with insulin resistance. Growing evidence suggests that the elevation of free fatty acids, including palmitic acid, are associated with inflammation and oxidative stress, which may be involved in endothelial dysfunction, characterized by the reduced bioavailability of nitric oxide (NO) synthesized from endothelial NO synthase (eNOS). Palmitic acid was found to induce significantly elevated levels of biologically active neutrophil chemoattractant, IL-8, from steatotic hepatocytes. In human Chang liver cells palmitic acid induced apoptosis accompanied by autophagy through mitochondrial dysfunction and endoplasmic reticulum stress, which are triggered by oxidative stress. Palmitic acid also stimulated pro-inflammatory responses in human immune cells via Toll-like receptor 4 (TLR4). In large prospective cohort, circulating palmitic acid was associated with higher diabetes risk. However, palmitic acid also plays an important role in early human development. At birth, the term infant is 13-15% body fat, with 45-50% of that as palmitic acid, much of which is derived from endogenous synthesis in the fetus. Palmitic acid is required for biosynthesis of lung lecithin, which is related to fetal maturation. Radiochromatogram showed high incorporation of palmitate into lecithin by fetal lung. Palmitic acid at concentrations up to 100 mg/dL showed little or no toxicity to sperm cells. Palmitic acid markedly suppressed the granulosa cell survival in a time- and dose-dependent manner. ANIMAL STUDIES: Administration of product formulations containing 2.2-74% palmitic acid produced minimal erythema and no edema 2-24 hr after application to the skin of albino rabbits. Administration of commercial grade palmitic acid to the eyes of 6 albino rabbits produced no irritation. Mild to moderate ocular irritation was produced in rabbits by product formulations containing 19.4% palmitic acid. One of these formulations had been diluted to 75% with corn oil. Cosmetic product formulations containing 2.2 and 4.4% palmitic acid produced no ocular irritation in 6 albino rabbits. Administration of up to 10 mL/kg of commercial-grade palmitic acid to rats caused no deaths and no significant gross lesions at necropsy. Transient clinical signs, such as unkempt fur, diarrhea, and slight CNS depression were seen at 4.64 and 10 mL/kg. Rats fed diets containing 4.6 g/kg/day palmitic acid for 6 weeks developed hyperlipemia. Rats that ingested a diet containing 6% palmitic acid for 16 weeks developed atherosclerotic lesions. Palmitic acid was administered to 16 mice at a dose of 1.0 mg 3 times per week for a total of 10 injections (total dose, 10 mg palmitic acid/mL tricaprylin). Eight mice were alive after 12 months, and 6 were alive after 18 months. One subcutaneous sarcoma was found after 19 months, 2 pulmonary neoplasms were found after 19 and 22 months, and 1 breast carcinoma was found after 22 months. Brief palmitic acid exposure of murine blastocysts resulted in altered embryonic metabolism and growth, with lasting adverse effects on offspring. Palmitic acid inhibited the cell growth in rat hepatocytes.
Interactions
Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients.
Non-alcoholic steatohepatitis (NASH) is an increasingly common cause of chronic liver disease; however, no specific pharmacologic therapy has been shown to be effective in its treatment. The present study was designed to develop an experimental cell culture model of NASH using four kinds of fatty acids - palmitic acid (PA), stearic acid (SA), linoleic acid (LA), and oleic acid (OA) - and TNF-a, according to the two-hit hypothesis. The saturated fatty acids PA and SA are more cytotoxic than the unsaturated fatty acids OA and LA. Cellular lipid accumulation without cytotoxicity was more easily induced with the unsaturated fatty acids than with the saturated fatty acids. PA augmented TNF-a-induced cytotoxicity, while the unsaturated fatty acids attenuated TNF-a-induced cytotoxicity. In a mechanistic study, PA enhanced TNF-a-mediated apoptosis in the absence of oxidative stress, as determined by measuring the cellular glutathione and malondialdehyde levels. Moreover, PA inhibited the TNF-a-induced phosphorylation of AKT, but not c-Jun N-terminal kinase, indicating that inhibition of survival signaling pathways activated by TNF-a may explain the effects of PA on TNF-a-induced cytotoxicity. The in vitro NASH model established in this study may be used to screen drug candidates for suitability for the treatment of NASH.
/The study objective was/ to observe the effects of total flavonoids of tartary buckwheat on NO synthesis in EA.hy926 cells induced by palmitic acid. EA.hy926 cells were cultured in vitro and randomly divided into control group, palmitic acid-induced insulin resistance group, total flavonoids of tartary buckwheat group and metformin group. The content of NO in supernatant was detected by nitrate reductase. The eNOS mRNA and protein expression levels were determined by RT-PCR and Western blotting, respectively. Compared with control group, the NO content in supernatant and the expression levels of eNOS mRNA and protein were significantly lower in insulin resistance group (P<0.05). Compared with insulin resistance group, the NO content in supernatant, as well as the eNOS mRNA and protein expression markedly increased in both total flavonoids of tartary buckwheat group and metformin group (P<0.05), but there was no significant difference between the latter two groups (P>0.05). Total flavonoids of tartary buckwheat effectively promotes the expression of eNOS mRNA and protein in endothelial cells under palmitic acid stimulation, thereby contributing to the NO synthesis.
The excess of saturated free fatty acids, such as palmitic acid, that induces lipotoxicity in hepatocytes, has been implicated in the development of non-alcoholic fatty liver disease also associated with insulin resistance. By contrast, oleic acid, a monounsaturated fatty acid, attenuates the effects of palmitic acid. We evaluated whether palmitic acid is directly associated with both insulin resistance and lipoapoptosis in mouse and human hepatocytes and the impact of oleic acid in the molecular mechanisms that mediate both processes. In human and mouse hepatocytes palmitic acid at a lipotoxic concentration triggered early activation of endoplasmic reticulum (ER) stress-related kinases, induced the apoptotic transcription factor CHOP, activated caspase 3 and increased the percentage of apoptotic cells. These effects concurred with decreased IR/IRS1/Akt insulin pathway. Oleic acid suppressed the toxic effects of palmitic acid on ER stress activation, lipoapoptosis and insulin resistance. Besides, oleic acid suppressed palmitic acid-induced activation of S6K1. This protection was mimicked by pharmacological or genetic inhibition of S6K1 in hepatocytes. ...
For more Interactions (Complete) data for Palmitic acid (22 total), please visit the HSDB record page.
Non-Human Toxicity Values
LD50 Mouse iv 57 mg/kg
References

[1]. PLoS One . 2017 May 2;12(5):e0176793.

[2]. Metabolism . 2014 Sep;63(9):1131-40.

[3]. In Vivo . 2011 Sep-Oct;25(5):711-8.

Additional Infomation
Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate.
A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids.
Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Palmitic Acid has been reported in Calodendrum capense, Camellia sinensis, and other organisms with data available.
Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat.
Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium.
A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids.
See also: Fatty acids, C14-18 (annotation moved to).
Mechanism of Action
... Excessive palmitoylcarnitine formation and exhausted L-carnitine stores leading to energy depletion, attenuated acetylcholine synthesis and oxidative stress to be main mechanisms behind PA-induced neuronal loss.High PA exposure is suggested to be a factor in causing diabetic neuropathy and gastrointestinal dysregulation.
... First phase insulin release response was lost in these islets. FFAs slightly increased the insulin output of normal fresh pancreas beta-cells. However, chronic exposure to FFAs resulted in loss of first phase insulin release and blunted insulin secretion response to various levels of D-glucose stimulation.
Therapeutic Uses
/EXPL THER/ Recent studies indicate that lipid metabolic changes affect the survival of multiple myeloma (MM) cells. Time-of-flight secondary ion mass spectrometry (TOF-SIMS), an imaging mass spectrometry technique, is used to visualize the subcellular distribution of biomolecules including lipids. We therefore applied this method to human clinical specimens to analyze the membrane fatty acid composition and determine candidate molecules for MM therapies. We isolated MM cells and normal plasma cells (PCs) from bone marrow aspirates of MM patients and healthy volunteers, respectively, and these separated cells were analyzed by TOF-SIMS. Multiple ions including fatty acids were detected and their ion counts were estimated. In MM cells, the mean intensity of palmitic acid was significantly lower than the mean intensity in PCs. In a cell death assay, palmitic acid reduced U266 cell viability dose-dependently at doses between 50 and 1000 uM. The percentage of apoptotic cells increased from 24 hr after palmitic acid administration. In contrast, palmitic acid had no effect on the viability of normal peripheral blood mononuclear cells (PBMCs). The results of this study indicated that palmitic acid is a potential candidate for novel therapeutic agents that specifically attack MM cells.
/EXPL THER/ Approximately 80% of all new HIV-1 infections are acquired through sexual contact. Currently, there is no clinically approved microbicide, indicating a clear and urgent therapeutic need. We recently reported that palmitic acid (PA) is a novel and specific inhibitor of HIV-1 fusion and entry. Mechanistically, PA inhibits HIV-1 infection by binding to a novel pocket on the CD4 receptor and blocks efficient gp120-to-CD4 attachment. Here, we wanted to assess the ability of PA to inhibit HIV-1 infection in cervical tissue ex vivo model of human vagina, and determine its effect on Lactobacillus (L) species of probiotic vaginal flora. Our results show that treatment with 100-200 uM PA inhibited HIV-1 infection in cervical tissue by up to 50%, and this treatment was not toxic to the tissue or to L. crispatus and jensenii species of vaginal flora. In vitro, in a cell free system that is independent of in vivo cell associated CD4 receptor; we determined inhibition constant (Ki) to be ~2.53 uM. These results demonstrate utility of PA as a model molecule for further preclinical development of a safe and potent HIV-1 entry microbicide inhibitor.
/EXPL THER/ In a recent laboratory study, a fatty acid from seaweed reduced the ability of HIV-1 viruses to enter immune system cells. The study was reported in the journal AIDS Research and Human Retroviruses. Drug-resistant strains of HIV-1 have been on the rise, prompting the need for new therapeutic agents. Previous studies have demonstrated that products derived from natural sources have the potential to inhibit HIV-1 infection. In this laboratory study, researchers evaluated palmitic acid (from Sargassum fusiforme, a type of seaweed that grows off the coasts of Japan and China) to see if palmitic acid reduced the ability of HIV-1 viruses to enter CD4+ T-cells (white blood cells that are HIV-1's main target). Palmitic acid blocked both X4-tropic and R5-tropic viruses, the HIV viruses that use a particular receptor (X4 or R5) to enter a cell. In addition, the study's findings showed that palmitic acid protected other cells against HIV-1, reducing X4 infection in primary peripheral blood lymphocytes and R5 infection in primary macrophages (white blood cells). In all cases, the extent of the blocking effect depended on the concentration of palmitic acid, and most cells remained viable (alive) after treatment. The researchers noted that understanding the relationship between palmitic acid and CD4 may lead to development of an effective microbicide product for preventing sexual transmission of HIV.
/EXPL THER/ The high rate of HIV-1 mutation and the frequent sexual transmission highlight the need for novel therapeutic modalities with broad activity against both CXCR4 (X4) and CCR5 (R5)-tropic viruses. We investigated a large number of natural products, and from Sargassum fusiforme we isolated and identified palmitic acid (PA) as a natural small bioactive molecule with activity against HIV-1 infection. Treatment with 100 uM PA inhibited both X4 and R5 independent infection in the T cell line up to 70%. Treatment with 22 uM PA inhibited X4 infection in primary peripheral blood lymphocytes (PBL) up to 95% and 100 uM PA inhibited R5 infection in primary macrophages by over 90%. Inhibition of infection was concentration dependent, and cell viability for all treatments tested remained above 80%, similar to treatment with 10(-6)M nucleoside analogue 2',3'-dideoxycytidine (ddC). Micromolar PA concentrations also inhibited cell-to-cell fusion and specific virus-to-cell fusion up to 62%. PA treatment did not result in internalization of the cell surface CD4 receptor or lipid raft disruption, and it did not inhibit intracellular virus replication. PA directly inhibited gp120-CD4 complex formation in a dose-dependent manner. We used fluorescence spectroscopy to determine that PA binds to the CD4 receptor with K(d) approximately 1.5 +/- 0.2 uM, and we used one-dimensional saturation transfer difference NMR (STD-NMR) to determined that the PA binding epitope for CD4 consists of the hydrophobic methyl and methelene groups located away from the PA carboxyl terminal, which blocks efficient gp120-CD4 attachment. These findings introduce a novel class of antiviral compound that binds directly to the CD4 receptor, blocking HIV-1 entry and infection. Understanding the structure-affinity relationship (SAR) between PA and CD4 should lead to the development of PA analogs with greater potency against HIV-1 entry.
Pharmacodynamics
Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C16H32O2
Molecular Weight
256.43
Exact Mass
256.24
Elemental Analysis
C, 74.94; H, 12.58; O, 12.48
CAS #
57-10-3
Related CAS #
Palmitic acid sodium;408-35-5;Palmitic acid-13C16 sodium;2483736-17-8;Palmitic acid-d4-1;75736-47-9;Palmitic acid-d31;39756-30-4;Palmitic acid-1-13C;57677-53-9;Palmitic acid-d2;62689-96-7;Palmitic acid-d3;75736-53-7;Palmitic acid-13C16;56599-85-0;Palmitic acid-d4;75736-49-1;Palmitic acid-13C;287100-87-2;Palmitic acid-13C sodium;201612-54-6;Palmitic acid-1,2,3,4-13C4;287100-89-4;Palmitic acid-15,15,16,16,16-d5;285979-77-3;Palmitic acid-13C2;86683-25-2;Palmitic acid-d2-1;62690-28-2;Palmitic acid-d4-2;75736-57-1;Palmitic acid-d17;81462-28-4;Palmitic acid-d2-2;272442-14-5;Palmitic acid-d2-3;83293-32-7;Palmitic acid-d2-4;30719-28-9;Palmitic acid-d;358730-99-1;Palmitic acid-d2-5;1219805-64-7;Palmitic acid-d9;1173022-49-5;Palmitic acid-d5;1219802-61-5;Palmitic acid-9,10-d2;78387-70-9
PubChem CID
985
Appearance
White to off-white solid powder
Density
0.9±0.1 g/cm3
Boiling Point
340.6±5.0 °C at 760 mmHg
Melting Point
61-62.5 °C(lit.)
Flash Point
154.1±12.5 °C
Vapour Pressure
0.0±0.8 mmHg at 25°C
Index of Refraction
1.454
LogP
7.15
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
14
Heavy Atom Count
18
Complexity
178
Defined Atom Stereocenter Count
0
SMILES
O([H])C(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])=O
InChi Key
IPCSVZSSVZVIGE-UHFFFAOYSA-N
InChi Code
InChI=1S/C16H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16(17)18/h2-15H2,1H3,(H,17,18)
Chemical Name
hexadecanoic acid
Synonyms
NSC5030; NSC-5030; NSC 5030; Palmitic acid
HS Tariff Code
2934.99.03.00
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~51 mg/mL (~198.9 mM)
Ethanol: 12.8~51 mg/mL (~50.0 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 10 mg/mL (39.00 mM) in 15% Cremophor EL + 85% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.5 mg/mL (9.75 mM) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (9.75 mM) (saturation unknown) in 10% EtOH + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.8997 mL 19.4985 mL 38.9970 mL
5 mM 0.7799 mL 3.8997 mL 7.7994 mL
10 mM 0.3900 mL 1.9498 mL 3.8997 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT01066091 Completed Other: mashed potatoes +
Palmitic acid
Other: Mashed potatoes
Healthy
Obesity
Yves Boirie March 2010 Not Applicable
NCT02835651 Completed Dietary Supplement: Palmitic
acid
Dietary Supplement: Stearic
acid
Dyslipidemia Maastricht University Medical
Center
April 14, 2016 Not Applicable
Biological Data
  • T0901317 enhances palmitic acid-induced cell death in INS-1 cells. In Vivo . 2011 Sep-Oct;25(5):711-8.
  • T0901317 and palmitic acid induce increased SREBP-1c mRNA expression in INS-1 cells. In Vivo . 2011 Sep-Oct;25(5):711-8.
  • Palmitic acid decreases spontaneous locomotor activity. Metabolism . 2014 Sep;63(9):1131-40.
  • Palmitic acid-induced loss of locomotion is not dependent on TLR4, MyD88, IL-1, IL-6 or TNFα. Metabolism . 2014 Sep;63(9):1131-40.
  • Palmitic acid is a ligand for TLR4/MD-2. PLoS One . 2017 May 2;12(5):e0176793.
Contact Us