yingweiwo

Papain

Cat No.:V28874 Purity: Activity of enzyme≥100000U/g
Papain is a cysteine protease in the peptidase C1 family and is extensively used in food, medicine, textiles, cosmetics, etc.
Papain
Papain Chemical Structure CAS No.: 9001-73-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50mg
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description
Papain is a cysteine protease in the peptidase C1 family and is extensively used in food, medicine, textiles, cosmetics, etc.
Biological Activity I Assay Protocols (From Reference)
Targets
Cysteine protease
ln Vitro
Papain is a peptidase C1 family cysteine protease that finds application in the culinary, pharmaceutical, textile, and cosmetic sectors.
ln Vivo
Murine papain-induced emphysema is a model that reproduces many of the features found in patients. Bone marrow-derived mononuclear cells (BMMC) have already been used to repair the alveolar epithelium in respiratory diseases, but not in the papain model. Thus, we hypothesized that BMMC could prevent the pathophysiological processes in papain-induced experimental emphysema. Female BALB/c mice received intratracheal instillation of 50 μL of saline (S groups) or papain (P groups, 10 IU/50 μl of saline) on days 1 and 7 of the experimental protocol. On the 14th day, 2 × 106 BMMC of male BALB/c mice (SC21 and PC21) or saline (SS21 and PS21) were injected by the jugular vein. Analyses were done on days 14 (S14 and P14) and 21 (SS21, PS21, SC21, and PC21) of the protocol. qPCR evaluated the presence of the Y chromosome in the lungs of BMMC recipient animals. Functional residual capacity (FRC), alveolar diameter, cellularity, elastic fiber content, concentrations of TNF-α, IL-1β, IL-6, MIP-2, KC, IFN-γ, apoptosis, mRNA expression of the dual oxidase (DUOX1 and DUOX2), production of H2O2 and DUOX activity were evaluated in lung tissue. We did not detect the Y chromosome in recipients' lungs. FRC, alveolar diameter, polymorphonuclear cells (PMN) and levels of KC, MIP-2, and IFN-γ increased in P14 and PS21 groups; the changes in the latter were reverted by BMMC. TNF-α, IL-1β e IL-6 were similar in all groups. The amount of elastic fibers was smaller in P14 and PS21 than in other groups, and BMMC did not increase it in PC21 mice. PS21 animals showed increased DUOX activity and mRNA expression for DUOX1 and 2. Cell therapy reverted the activity of DUOX and mRNA expression of DUOX1. BMMC reduced mRNA expression of DUOX2. Apoptosis index was elevated in PS21 mice, which was reduced by cell therapy in PC21. Static compliance, viscoelastic component of elastance and pressure to overcome viscoelasticity were increased in P14 and PS21 groups. These changes and the high resistive pressure found on day 21 were reverted by BMMC. In conclusion, BMMC showed potent anti-inflammatory, antiapoptotic, antioxidant, and restorative roles in papain-triggered pulmonary emphysema.[1]
Animal Protocol
The animals were sedated by inhalation of sevoflurane, weighed (model BR), and saline or papain was injected into the trachea using an insulin syringe. This procedure last about 3 min.[1]
Fifteen male BALB/c mice (20–25 g) were quickly euthanized by cervical dislocation. BMMC were aspirated from their femur and tibia by flushing the bone marrow cavity with Dulbecco's modified Eagle's medium (DMEM). After a homogeneous cell suspension was obtained, the cells were centrifuged (4,000 g for 10 min), re-suspended in DMEM and added to Ficoll-Hypaque (Histopaque 1083), centrifuged again (5,000 g, 30 min) and supplemented with sterile PBS. Cells were counted in a Neubauer chamber with Trypan Blue for evaluation of viability. Cell characterization was performed by flow cytometry using specific antibodies (Conget and Minguell, 1999; Maron-Gutierrez et al., 2011).[1]
Figure ​Figure11 shows that 60 female BALB/c mice (20–25 g) were randomly divided into six groups. In S14 (n = 10), SS21 (n = 10), and SC21 (n = 10) groups, mice were intratracheally (i.t.) injected with 50 μL of sterile saline solution (0.9% NaCl) on days 1 and 7 of the experimental protocol. In P14 (n = 10), PS21 (n = 10), and PC21 (n = 10) groups, mice were i.t. injected with 50 μL of sterile saline solution (0.9% NaCl) containing 10 IU of papain (0.2 IU/μL) on days 0 and 7 of the experimental protocol. Papain (USP 225310) had been previously activated in 0.1 M sodium phosphate buffer containing 10 mM EDTA, 0.4 NaCl and 5 mM dithiothreitol for 10 min at 40°C (Machado et al., 2014). On the 14th day, 2 × 106 BMMC from male BALB/c mice suspended in 50 μL of sterile saline solution (SC21 and PC21 groups) or 50 μL of sterile saline solution (0.9% NaCl) (SS21 and PS21 groups) were injected into the jugular vein. Histopathological parameters and pulmonary mechanics were analyzed on the 14th (S14 and P14 groups) and 21st (SS21, PS21, SC21, and PC21 groups) days of the protocol.[1]
References

[1]. Bone Marrow-Derived Mononuclear Cell Therapy in Papain-Induced Experimental Pulmonary Emphysema. Front Physiol. 2018 Feb 20;9:121.

Additional Infomation
Type II alveolar cells express the enzymes DUOX 1 and DUOX 2, which, just as in the airways, are found in the apical pole of cells. Although DUOX 1 and 2 are found in the alveoli, there is scanty available information about their participation in H2O2 production at this histological level (Fischer, 2009). H2O2 production by these enzymes at the alveolar level is considered low in relation to the generation of H2O2 seen in the airway epithelium (Fischer et al., 2007). The precise role of the DUOXs enzymes in the pathogenesis of pulmonary emphysema is controversial and require more enlightening studies. We evaluated the mRNA expression for DUOX1 and DUOX2 and observed an increased expression of mRNA for DUOX1 and DUOX2 in the lung tissue (Figure ​(Figure5)5) of the animals exposed to papain, in agreement with other groups (Ameziane-El-Hassani et al., 2005; Harper et al., 2005; Rigutto et al., 2009). Administration of 2 × 106 BMMC attenuated mRNA expression for DUOX1 and DUOX2 in lung tissue. In addition, we observed an increase in the H2O2 generation and in the calcium-stimulated activity of DUOX in the lung tissue of animals treated with papain compared to the other groups, reinforcing the hypothesis that 2 × 106 BMMC may behave as an antioxidant agent (Figure ​(Figure6).6). There are distinct roles for the NADPH oxidase in the airways (Fischer, 2009). Despite the high structural similarity of the two DUOX isoforms, the production of H2O2 by DUOX2 is higher than by DUOX1 in the pulmonary airway epithelium (Ameziane-El-Hassani et al., 2005; Rigutto et al., 2009). However, normal airway epithelium expresses DUOX1 at higher levels than DUOX 2 (Schwarzer et al., 2004; Harper et al., 2005). Therefore, the release of H2O2 by DUOX1 and DUOX2 may be similar in the airways of normal individuals. Some cytokines selectively regulate DUOX1 and DUOX2 expression levels; IFN-γ positively regulates DUOX2 expression (Harper et al., 2005). We found that IFN-γ was augmented in papain-exposed mice and was reduced by BMMC (Table ​(Table2),2), in line with DUOX activity (Figure ​(Figure6).6). Briefly, we emphasize the novelty of our results, since there is no description to date of the effects of cell therapy on the pathways of NADPH oxidases in a murine model of papain-induced pulmonary emphysema, specifically related to the regulation of DUOXs enzymes. In conclusion, 2 × 106 BMMCs showed potent anti-inflammatory, antiapoptotic, antioxidant and restorative effects in papain-triggered pulmonary emphysema, possibly by blocking DUOX1 and reducing DUOX2.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C9H14N4O3
Molecular Weight
226.2325
Exact Mass
451.217
CAS #
9001-73-4
PubChem CID
5249653
Appearance
White to off-white solid powder
Density
1.5±0.1 g/cm3
Flash Point
29 °C
Index of Refraction
1.652
LogP
-1.47
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
5
Heavy Atom Count
16
Complexity
254
Defined Atom Stereocenter Count
0
InChi Key
CQOVPNPJLQNMDC-UHFFFAOYSA-N
InChi Code
InChI=1S/C9H14N4O3/c10-2-1-8(14)13-7(9(15)16)3-6-4-11-5-12-6/h4-5,7H,1-3,10H2,(H,11,12)(H,13,14)(H,15,16)
Chemical Name
2-(3-azaniumylpropanoylamino)-3-(1H-imidazol-5-yl)propanoate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~50 mg/mL
DMSO : ~25 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: 50 mg/mL (Infinity mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.4203 mL 22.1014 mL 44.2028 mL
5 mM 0.8841 mL 4.4203 mL 8.8406 mL
10 mM 0.4420 mL 2.2101 mL 4.4203 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT00485329; Lower Extremity Chronic Venous Ulcers; 2007;Phase 1/2
NCT04711044; Itch; 2021 Not Applicable
NCT02015195; Jellyfish Stings; 2013
Contact Us