yingweiwo

PB28 dihydrochloride

Cat No.:V40896 Purity: ≥98%
PB28 dihydrochloride, a cyclohexylpiperazine analog, is a novel, high affinity and selective σ2 receptor agonist.
PB28 dihydrochloride
PB28 dihydrochloride Chemical Structure CAS No.: 172907-03-8
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
50mg
Other Sizes

Other Forms of PB28 dihydrochloride:

  • PB28
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

PB28 dihydrochloride, a cyclohexylpiperazine analog, is a novel, high affinity and selective σ2 receptor agonist. PB28 can modulate SARS-CoV-2-human protein-protein interaction. PB28 induces caspase-independent apoptosis and has antitumor activity.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
After 2 days of culture with PB28 dihydrochloride, interfering MCF7 PB28 dihydrochloride induces cell growth through a caspase-independent pathway with IC50s of 25 nM and 15 nM respectively [1]. PB28 dihydrochloride also reduces P-gp expression in a concentration- and time-dependent manner (~60% in MCF7, ~90% in MCF7 ADR) [1]. PB28 dihydrochloride exhibits accumulation in the G0-G1 phase of MCF7 and MCF7 ADR cells, independent of time and concentration [1].
ln Vivo
In Panc02 tumor-burdened mice, treatment with PB28 dihydrochloride (10.7 mg/mL; intraperitoneal injection; daily; weekends; C57BL/6 female mice) suppresses tumor growth. Mice who receive PB28 dihydrochloride also have an advantage in survival [2]. Panc02 cells were implanted into 10 week old female C57BL/6 mice [2].
Cell Assay
Cell Viability Assay [1]
Cell Types: MCF7 and MCF7 ADR Cell
Tested Concentrations: 25 nM and 15 nM
Incubation Duration: 24 hrs (hours), 48 hrs (hours).
Experimental Results: Show the cumulative toxicity of MCF7 and MCF7 ADR in the G0-G1 phase [1]. cells independent of time and concentration.
Animal Protocol
Animal/Disease Models: C57BL/6 female mice (10 weeks old) injected with Panc02 cells[2]
Doses: 10.7 mg/mL
Route of Administration: intraperitoneal (ip) injection; daily; for two weeks
Experimental Results:Inhibited tumor growth in Panc02 tumor burden mice.
References
[1]. Amalia Azzariti, et al. Cyclohexylpiperazine Derivative PB28, a sigma2 Agonist and sigma1 Antagonist Receptor, Inhibits Cell Growth, Modulates P-glycoprotein, and Synergizes With Anthracyclines in Breast Cancer. Mol Cancer Ther. 2006 Jul;5(7):1807-16.
[2]. Maria Laura Pati, et al. Sigma-2 Receptor Agonist Derivatives of 1-Cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28) Induce Cell Death via Mitochondrial Superoxide Production and Caspase Activation in Pancreatic Cancer. BMC Cancer. 2017 Jan 13;17(1):51.
[3]. Nicola A Colabufo, et al. A New Method for Evaluating sigma(2) Ligand Activity in the Isolated Guinea-Pig Bladder. Naunyn Schmiedebergs Arch Pharmacol. 2003 Aug;368(2):106-12.
[4]. Francesco Berardi, et al. Exploring the Importance of Piperazine N-atoms for sigma(2) Receptor Affinity and Activity in a Series of Analogs of 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28). J Med Chem. 2009 Dec 10;52(23):7817-28.
[5]. David E Gordon, et al. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing. bioRxiv. 2020 Mar 22;2020.03.22.002386.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C24H40CL2N2O
Molecular Weight
443.493205070496
CAS #
172907-03-8
Related CAS #
PB28;172906-90-0
Appearance
Typically exists as solids (or liquids in special cases) at room temperature
SMILES
Cl.Cl.COC1=CC=CC2C(CCCC1=2)CCCN1CCN(C2CCCCC2)CC1
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~9 mg/mL (~20.29 mM)
DMSO : ~5 mg/mL (~11.27 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 1 mg/mL (2.25 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 10.0 mg/mL clear DMSO stock solution to 400 μL of PEG300 and mix evenly; then add 50 μL of Tween-80 to the above solution and mix evenly; then add 450 μL of normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 1 mg/mL (2.25 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 10.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 1 mg/mL (2.25 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 10.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.2548 mL 11.2742 mL 22.5484 mL
5 mM 0.4510 mL 2.2548 mL 4.5097 mL
10 mM 0.2255 mL 1.1274 mL 2.2548 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us