yingweiwo

Taminadenant HCl hydrate (PBF-509; NIR-178)

Alias: PBF509; NIR178;NIR 178;PBF 509; PBF-509; NIR-178
Cat No.:V3945 Purity: ≥98%
Taminadenant HCl (PBF509; NIR178) isa novel potent and oral non-xhantine non-furan A2AR (adenosine) antagonist with thepotential to be used as a pro-dopaminergic drug for PD management.
Taminadenant HCl hydrate (PBF-509; NIR-178)
Taminadenant HCl hydrate (PBF-509; NIR-178) Chemical Structure CAS No.: 2253894-78-7
Product category: Others 8
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

Taminadenant HCl (PBF509; NIR178) is a novel potent and oral non-xhantine non-furan A2AR (adenosine) antagonist with the potential to be used as a pro-dopaminergic drug for PD management. PBF509 was shown to be a highly potent ligand at the human A2AR, since it antagonized A2AR agonist-mediated cAMP accumulation and impedance responses with KB values of 72.8 ± 17.4 and 8.2 ± 4.2 nM, respectively. PBF509 (orally) antagonized haloperidol-mediated catalepsy, reduced pilocarpine-induced tremulous jaw movements and potentiated the number of contralateral rotations induced by L-3,4-dihydroxyphenylalanine (L-DOPA) in unilaterally 6-OHDA-lesioned rats. Moreover, PBF509(3 mg/kg) inhibited L-DOPA-induced dyskinesia (LID), showing not only its efficacy on reversing parkinsonian motor impairments but also acting as antidyskinetic agent.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
PBF-509 is highly specific to the A2aR as well as inhibitory of A2aR function in an in vitro model. In a mouse model, we found that lung metastasis was decreased after treatment with PBF-509 compared with its control. Furthermore, freshly resected tumor-infiltrating lymphocytes from lung cancer patients showed increased A2aR expression in CD4+ cells and variable expression in CD8+ cells. Ex vivo studies showed an increased responsiveness of human tumor-infiltrating lymphocytes when PBF-509 was combined with anti-PD-1 or anti-PD-L1.[2]
Cell Assay
Tumor cells were isolated from portions of lung tumors resected from patients for clinically indicated reasons. The tumors were disaggregated for 2 hours in a collagenase-DNase solution in the presence of complete protease inhibitors (Roche). The disaggregated tumor cells were then counted and seeded in 96-well plates at 200,000 cells per well. PBF-509 (Palobiofarma; 1 μM), anti-PD-L1 (eBioscience; 10 μg/ml), anti-PD-1 (eBioscience; 10 μg/ml), and rh-IL-2 (6000 U/ml) were also added at the time of seeding. After 72-hour incubation, the supernatant was collected for γ-interferon ELISA (R&D Systems).[2]
Animal Protocol
C57Bl/6 mice were injected intravenously with 3 × 105 B16F10 tumor cells retrovirally gene-modified to express CD73 or 105 MCA205 cells. Mice were then treated daily with vehicle control or PBF-509 by oral gavage from day 0. Vehicle consisted of 0.1% Tween 80 and 0.5% sodium carboxymethylcellulose in water. At day 15 post-injection of tumor cells, mice were killed, lungs were harvested, and tumor nodules were counted under dissecting microscope.[2]
References
2018 Oct 19;9:1200;. 2017 Jul; 19(7): 530–536.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
CAS #
2253894-78-7
Related CAS #
N/A
Appearance
Typically exists as solid at room temperature
Chemical Name
N/A
Synonyms
PBF509; NIR178;NIR 178;PBF 509; PBF-509; NIR-178
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:N/A
Water:N/A
Ethanol:N/A
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • PBF-509

    Inhibition of A2AR-mediated cAMP accumulation. Inhibition of the CGS21680-mediated cAMP accumulation. A SCH442416 and PBF509 concentration-response inhibition curve of CGS21260-mediated cAMP was assessed in HEK-293 cells permanently expressing the A2ARSNAP.2018 Oct 19;9:1200.

  • PBF-509

    PBF509 blocks A2AR-mediated whole cell label-free responses.2018 Oct 19;9:1200.

  • PBF-509

    PBF509 reverses haloperidol-induced catalepsy. Rats were pretreated with haloperidol (1.0 mg/kg, s.c.) and 1 h later the selected cataleptic animals were orally administered with either vehicle or PBF509 (3, 10, and 30 mg/kg, p.o.).2018 Oct 19;9:1200.

  • PBF-509

    PBF509 attenuates pilocarpine-induced tremulous jaw movements.Effect of different doses of SCH442416 and PBF509 on pilocarpine-induced tremulous jaw movements. The number of jaw movements were recorded during 1 h in rats orally administered with vehicle (Veh), SCH442416 or PBF509 (0.3–7.5 mg/kg) before (20 min) pilocarpine administration (1 mg/kg, i.p.).2018 Oct 19;9:1200.

  • PBF-509

    Immunoreactivity of A2AR in the striatum of 6-OHDA-lesioned rats.2018 Oct 19;9:1200.

  • PBF-509

    PBF509-mediated potentiation ofl-DOPA-induced contralateral rotations in 6-OHDA-lesioned rats. The number of contralateral rotations in 6-OHDA-lesioned rats orally administered with vehicle (Veh) or SCH420814 and PBF509 (0.3 and 3 mg/kg) in the absence or presence ofl-DOPA (4 mg/kg) was monitored during a 2 h period.2018 Oct 19;9:1200.

Contact Us