yingweiwo

Phenformin

Alias: BRN 1977317 Azucaps DebeonePhenformin Insoral
Cat No.:V7089 Purity: ≥98%
Phenformin (1-phenethylbiguanide) is an orally bioactive antidiabetic and anticancer compound.
Phenformin
Phenformin Chemical Structure CAS No.: 114-86-3
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Phenformin:

  • Phenformin HCl (ST50409947; D08352; W104144)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Phenformin (1-phenethylbiguanide) is an orally bioactive antidiabetic and anticancer compound. Phenformin has an associated incidence of lactic acidosis. Phenformin acts by activating AMPK and blocking the mTOR pathway. Phenformin is also a substrate of P-glycoprotein (P-gp) and an inhibitor (blocker/antagonist) of OXPHOS. Phenformin causes apoptosis in cancer/tumor cells.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
PHENFORMIN IS ADEQUATELY ABSORBED FROM GI TRACT. DRUG HAS SHORT T/2 (3 HR) & CORRESPONDINGLY BRIEF DURATION OF ACTION. HYPOGLYCEMIC EFFECT MAY BE PROLONGED TO BETWEEN 6 & 14 HR WITH USE OF TIMED-DISINTEGRATION CAPSULES.
(14)C-LABELED PHENFORMIN ADMIN TO RATS (100 MG/KG ORALLY OR IP) & GUINEA PIGS (25 MG/KG ORALLY & 12.5 IP). EXCRETION OF RADIOACTIVITY & METAB WAS SLOWER IN GUINEA PIGS WHICH MAY PARTLY EXPLAIN THE INCR PHARMACOLOGICAL RESPONSE OF GUINEA PIGS TO PHENFORMIN.
RATS ELIMINATED 26% OF AN INTRADUODENAL DOSE OF LABELED PHENFORMIN (20 MG/KG) IN BILE IN 6 HR COMPARED TO 6% IN GUINEA PIG.
IN 8 DIABETIC PT HALF-LIFE OF PHENFORMIN WAS UNRELATED TO DEGREE OF RENAL IMPAIRMENT, WHEREAS REDUCED RENAL CLEARANCES OF INSULIN & CREATININE WERE SIGNIFICANTLY CORRELATED WITH PROLONGED HALF-LIFE OF ITS METABOLITE P-HYDROXYPHENETHYLBIGUANIDE.
Metabolism / Metabolites
IN RATS & GUINEA PIGS, MAJOR METABOLITE OF PHENFORMIN, N(1)-BETA-PHENETHYLBIGUANIDE, IS N(1)-P-HYDROXY-BETA-PHENETHYLBIGUANIDE, & CORRESPONDING O-ETHER GLUCURONIDE HAS ALSO BEEN DETECTED.
METAB IN RATS & GUINEA PIGS. RATS EXCRETED LARGE AMT OF 4-HYDROXYPHENFORMIN (FREE & GLUCURONIC ACID CONJUGATED) & SOME UNCHANGED PHENFORMIN. METAB VARIED WITH DOSE & ROUTE OF ADMIN. GUINEA PIGS EXCRETED SMALL AMT OF 4-HYDROXYPHENFORMIN AFTER IP ADMIN & NONE AFTER ORAL ADMIN.
LABELED COMPD WAS ADMIN. AN UNIDENTIFIED METAB & ITS GLUCURONIDE, WHICH MAY RESULT FROM ALIPHATIC C- OR N-HYDROXYLATION, ACCOUNTED FOR 47% OF 24-HR URINARY RADIOACTIVITY (17% OF DOSE) FOLLOWING ORAL ADMIN TO GUINEA PIGS.
26 HR FOLLOWING ADMIN OF SINGLE DOSE OF PHENFORMIN, 50 MG/KG ORALLY, P-HYDROXYPHENFORMIN WAS MAJOR URINARY METAB IN PHENOTYPICALLY EXTENSIVE METABOLIZERS, BUT WAS NOT OBSERVED IN PHENOTYPICALLY POOR METABOLIZERS.
METAB IN 8 DIABETIC PT WITH RENAL IMPAIRMENT. EXCRETION OF THE METAB P-HYDROXYPHENETHYLBIGUANIDE WAS VARIABLE (BETWEEN 4.9% & 27% OF TOTAL URINARY DOSE LOSS) PROBABLY DUE TO GENETIC POLYMORPHISM OF HEPATIC MECHANISMS FOR HYDROXYLATION.
Phenformin has known human metabolites that include p-Hydroxyphenylethylbiguanide.
Toxicity/Toxicokinetics
Interactions
PHENFORMIN HAS BEEN REPORTED...TO ENHANCE ACTIVITY OF WARFARIN. PROPOSED MECHANISM IS INCR FIBRINOLYTIC EFFECT CAUSED BY PHENFORMIN SEEN DURING FIRST FEW MO OF TREATMENT.
USE OF PROPRANOLOL IN DIABETIC PT...CAN RESULT IN DISTURBANCE OF CARBOHYDRATE METABOLISM & SHOULD BE AVOIDED. IF INSULIN & PROPRANOLOL...GIVEN CONCURRENTLY, PERIODIC SERUM GLUCOSE LEVELS SHOULD BE DETERMINED. ...SIMILAR PRECAUTIONS...APPLICABLE TO CONCURRENT USE OF...PHENFORMIN.
DIABETIC PT TREATED WITH PHENFORMIN SHOULD AVOID INGESTION OF ALCOHOLIC BEVERAGES BECAUSE CONCURRENT USE MAY CAUSE HYPOGLYCEMIC REACTIONS OR LEAD TO LIFE-THREATENING LACTIC ACIDOSIS WITH SHOCK.
DIPHENYLHYDANTOIN GIVEN IP TO RATS DECR LIVER LEVELS OF THIAMIN, RIBOFLAVIN, NIACIN, & PANTOTHENIC ACID. HEPATIC THIAMIN CONTENT WAS NORMALIZED BY SIMULTANEOUS ADMIN OF EITHER ACETOHEXAMINE OR PHENFORMIN.
For more Interactions (Complete) data for PHENFORMIN (6 total), please visit the HSDB record page.
References

[1]. Phenformin as an Anticancer Agent: Challenges and Prospects. Int J Mol Sci. 2019 Jul 5;20(13):3316.

[2]. A review of phenformin, metformin, and imeglimin. Drug Dev Res. 2020 Jun;81(4):390-401.

Additional Infomation
Phenformin is a member of the class of biguanides that is biguanide in which one of the terminal nitrogen atoms is substituted by a 2-phenylethyl group. It was used as an anti-diabetic drug but was later withdrawn from the market due to potential risk of lactic acidosis. It has a role as an antineoplastic agent, a geroprotector and a hypoglycemic agent. It is functionally related to a biguanide.
A biguanide hypoglycemic agent with actions and uses similar to those of metformin. Although it is generally considered to be associated with an unacceptably high incidence of lactic acidosis, often fatal, it is still available in some countries. (From Martindale, The Extra Pharmacopoeia, 30th ed, p290)
Phenformin is an agent belonging to the biguanide class of antidiabetics with antihyperglycemic activity. Phenformin is not used clinically due to the high risk of lactic acidosis that is associated with its use.
A biguanide hypoglycemic agent with actions and uses similar to those of METFORMIN. Although it is generally considered to be associated with an unacceptably high incidence of lactic acidosis, often fatal, it is still available in some countries. (From Martindale, The Extra Pharmacopoeia, 30th ed, p290)
Drug Indication
For the reatment of type II diabetes mellitus.
Mechanism of Action
Phenformin binds to the AMP-activated protein kinase (AMPK). AMPK is an ultra-sensitive cellular energy sensor that monitors energy consumption and down-regulates ATP-consuming processes when activated. The biguanide phenformin has been shown to independently decrease ion transport processes, influence cellular metabolism and activate AMPK. Phenformin's hypoglycemic activity is related the effect it has in activating AMPK and fooling insulin sensitive cells into thinking that insulin levels are low and causing the body to use glucose as if in a state of low caloric consumption. This drug also seems to inhibit several varients of ATP-sensitive potassium channels (namely the receptor subtype Kir6.1).
IN VITRO, PHENFORMIN, IN RELATIVELY LARGE DOSES, INCR GLUCOSE UTILIZATION BY ENHANCING ANAEROBIC GLYCOLYSIS. THIS IS THOUGHT TO OCCUR AS RESULT OF, OR COINCIDENT WITH, INHIBITION OF CELLULAR RESPIRATION. ...ADENOSINE TRIPHOSPHATE (ATP) CONCN FALL & THOSE OF LACTATE INCR. SECOND ACTION OF DRUG IS TO DECR GLUCONEOGENESIS.
...MOST RECENTLY RECOGNIZED IS INHIBITION OF INTESTINAL ABSORPTION OF GLUCOSE & PROBABLY CERTAIN OTHER SUBSTANCES AS WELL; FOR EXAMPLE, DECR ABSORPTION OF VITAMIN B12 HAS BEEN OBSERVED. ...DOES NOT ACT IN NORMAL SUBJECT...PRESUMABLY BECAUSE INCR IN PERIPHERAL GLUCOSE UTILIZATION IS COMPENSATED FOR BY INCR HEPATIC GLUCOSE...
BIGUANIDES APPARENTLY LOWER BLOOD SUGAR INDIRECTLY BY INHIBITING GLUCONEOGENESIS & INCR INSULIN SENSITIVITY. /ORAL HYPOGLYCEMICS/
They induce and increase in peripheral glucose utilization, a decrease in hepatic gluconeogenesis, and a decrease in intestinal absorption of glucose, vitamin B, and bile acids. /Biguanides/
Phenformin generally lowers the blood sugar only in the diabetic patient; it also depresses the blood sugar level in a nutritionally starved individual but not in one who is well fed. In its usual dose administered to a healthy individual, phenformin does not induce lactic acidosis. Phenformin requires insulin for its action, but does not induce and elevation in plasma insulin levels.
Therapeutic Uses
Hypoglycemic Agents
EXPTL USE: PHENFORMIN (2 MG) ADMIN 5 DAYS/WK TO C3H/SN MICE FROM AGE 3.5 MO UNTIL DEATH DECR THE NUMBER OF SPONTANEOUS TUMORS 4.0 FOLD & AVG SURVIVAL OF ANIMALS BY 100 DAYS.
IF PT REQUIRES MORE THAN 40 UNITS OF INSULIN/DAY, HE IS UNLIKELY TO RESPOND TO PHENFORMIN. ...PHENFORMIN PLUS ESTROGENS HAVE BEEN USED WITH SUCCESS IN REDUCING MORTALITY IN SURVIVORS OF MYOCARDIAL INFARCTION.
PHENFORMIN IS USED IN TREATMENT OF MATURITY-ONSET DIABETES...
For more Therapeutic Uses (Complete) data for PHENFORMIN (8 total), please visit the HSDB record page.
Drug Warnings
IN PRESENCE OF RENAL GLYCOSURIA, FATAL HYPOGLYCEMIA CAN OCCUR.
IRREVERSIBLE LACTIC ACIDOSIS OCCURRED IN TWO PATIENTS UNDERGOING PHENFORMIN THERAPY FOR DIABETES.
PHENFORMIN...ANTIDIABETIC AGENT TAKEN ORALLY, IS REPORTED TO HAVE CAUSED TRANSITORY MYOPIA IN 53-YR-OLD DIABETIC PATIENTS.
DIABETIC SUBJECTS WITH SEVERE HEPATIC OR RENAL INSUFFICIENCY OR CONGESTIVE HEART FAILURE ARE NOT SUITABLE CANDIDATES FOR ORAL HYPOGLYCEMIC THERAPY. ...ITS ADMIN DURING PREGNANCY IS CURRENTLY NOT RECOMMENDED.
For more Drug Warnings (Complete) data for PHENFORMIN (11 total), please visit the HSDB record page.
Pharmacodynamics
Used to treat diabetes, phenformin is a biguanide (contains 2 guanidino groups) hypoglycemic agent with actions and uses similar to those of metformin (Glucophage). Both drugs work by (1) decreasing the absorption of glucose by the intestines, (2) decreasing the production of glucose in the liver, and by (3) increasing the body's ability to use insulin more effectively. More specifically, phenformin improves glycemic control by improving insulin sensitivity. Phenformin is generally considered to be associated with an unacceptably high incidence of actic acidosis. In general biguanides should be used only in stable type II diabetics who are free of liver, kidney and cardiovascular problems and who cannot be controlled with diet.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H15N5
Molecular Weight
205.27
Exact Mass
205.132
CAS #
114-86-3
Related CAS #
Phenformin hydrochloride;834-28-6
PubChem CID
8249
Appearance
White to off-white solid powder
Density
1.2±0.1 g/cm3
Boiling Point
332.2±35.0 °C at 760 mmHg
Melting Point
280-282°C
Flash Point
154.7±25.9 °C
Vapour Pressure
0.0±0.7 mmHg at 25°C
Index of Refraction
1.620
LogP
-0.6
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
1
Rotatable Bond Count
4
Heavy Atom Count
15
Complexity
236
Defined Atom Stereocenter Count
0
InChi Key
ICFJFFQQTFMIBG-UHFFFAOYSA-N
InChi Code
InChI=1S/C10H15N5/c11-9(12)15-10(13)14-7-6-8-4-2-1-3-5-8/h1-5H,6-7H2,(H6,11,12,13,14,15)
Chemical Name
1-(diaminomethylidene)-2-(2-phenylethyl)guanidine
Synonyms
BRN 1977317 Azucaps DebeonePhenformin Insoral
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.8716 mL 24.3582 mL 48.7163 mL
5 mM 0.9743 mL 4.8716 mL 9.7433 mL
10 mM 0.4872 mL 2.4358 mL 4.8716 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us