Size | Price | Stock | Qty |
---|---|---|---|
500mg |
|
||
Other Sizes |
|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
In rats, phosalone was rapidly metabolized when admin orally. Three unidentified cmpd were present in urine. When carbonyl-c was labeled, 65.4% of label appeared as (14)co2 & 32.4% in urine & feces within 4 days. Metabolism / Metabolites Phosalone-oxon, which was formed in treated plants, degraded more rapidly than phosalone. In plants they were attacked hydrolytically @ p-s-c link. Metabolism of organophosphates occurs principally by oxidation, by hydrolysis via esterases and by reaction with glutathione. Demethylation and glucuronidation may also occur. Oxidation of organophosphorus pesticides may result in moderately toxic products. In general, phosphorothioates are not directly toxic but require oxidative metabolism to the proximal toxin. The glutathione transferase reactions produce products that are, in most cases, of low toxicity. Paraoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of organophosphate exposure. |
---|---|
Toxicity/Toxicokinetics |
Toxicity Summary
Phosalone is a cholinesterase or acetylcholinesterase (AChE) inhibitor. A cholinesterase inhibitor (or 'anticholinesterase') suppresses the action of acetylcholinesterase. Because of its essential function, chemicals that interfere with the action of acetylcholinesterase are potent neurotoxins, causing excessive salivation and eye-watering in low doses, followed by muscle spasms and ultimately death. Nerve gases and many substances used in insecticides have been shown to act by binding a serine in the active site of acetylcholine esterase, inhibiting the enzyme completely. Acetylcholine esterase breaks down the neurotransmitter acetylcholine, which is released at nerve and muscle junctions, in order to allow the muscle or organ to relax. The result of acetylcholine esterase inhibition is that acetylcholine builds up and continues to act so that any nerve impulses are continually transmitted and muscle contractions do not stop. Among the most common acetylcholinesterase inhibitors are phosphorus-based compounds, which are designed to bind to the active site of the enzyme. The structural requirements are a phosphorus atom bearing two lipophilic groups, a leaving group (such as a halide or thiocyanate), and a terminal oxygen. Interactions Rats were given chlorpromazine (I) (0.02 mg/day, orally), zolone (II) (0.0386 mg/day, orally), or both drugs together for 5 wk. Histological and histochemical study of liver tissue showed both morphological and enzymological damage resulting from drug treatment. Combination treatment caused more damage than treatment with I or II alone. I appears to be a hepatotoxin, and the increased alteration of hepatocytes after combination treatment may be the result of a II-induced increase in metabolism of I, with rapid formation of hepatotoxic free radicals. Non-Human Toxicity Values LD50 Rat male oral 120-170 mg/kg LD50 Mouse oral 180 mg/kg LD50 Guinea pig oral 380 mg/kg LD50 Rat percutaneous 1500 mg/kg For more Non-Human Toxicity Values (Complete) data for PHOSALONE (9 total), please visit the HSDB record page. |
Additional Infomation |
Phosalone is a member of the class of 1,3-benzoxazoles carrying a [(diethoxyphosphorothioyl)sulfanyl]methyl group at the nitrogen atom, an oxo group at position 2 and a chloro group at position 6. It is an organothiophosphate insecticide. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.1.1.8 (cholinesterase) inhibitor, an acaricide and an agrochemical. It is an organothiophosphate insecticide, an organochlorine insecticide, a carbamate ester and a member of 1,3-benzoxazoles.
Phosalone has been reported in Sorangium cellulosum with data available. Phosalone is an organophosphate chemical commonly used as an insecticide and acaricide. It is developed by Rhône-Poulenc in France but EU eliminated it from pesticide registration on December 2006. Mechanism of Action OPs /including phosalone/ exert their neurotoxicity by binding to and phosphorylating the enzyme acetylcholinesterase in both the central (brain) and peripheral nervous systems. There are laboratory animal data on OPs for cholinesterase activity in plasma, red blood cell (RBC) and brain, as well as behavioral or functional neurological effects in submitted guideline studies. Measures of acetylcholinesterase inhibition in the peripheral nervous system (PNS) are very limited for the OP pesticides. As a matter of /EPA/ science policy, blood cholinesterase data (plasma and RBC) are considered appropriate surrogate measures of potential effects on PNS acetylcholinesterase activity and of potential effects on the central nervous system (CNS) when brain cholinesterase data are lacking. |
Molecular Formula |
C12H15CLNO4PS2
|
---|---|
Molecular Weight |
367.79
|
Exact Mass |
366.986
|
CAS # |
2310-17-0
|
PubChem CID |
4793
|
Appearance |
Crystals
White Colorless |
Density |
1.4±0.1 g/cm3
|
Boiling Point |
446.7±55.0 °C at 760 mmHg
|
Melting Point |
45-48ºC
|
Flash Point |
223.9±31.5 °C
|
Vapour Pressure |
0.0±1.1 mmHg at 25°C
|
Index of Refraction |
1.609
|
LogP |
4.28
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
6
|
Rotatable Bond Count |
7
|
Heavy Atom Count |
21
|
Complexity |
418
|
Defined Atom Stereocenter Count |
0
|
SMILES |
S=P(OCC)(SCN1C(OC2=CC(Cl)=CC=C12)=O)OCC
|
InChi Key |
IOUNQDKNJZEDEP-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C12H15ClNO4PS2/c1-3-16-19(20,17-4-2)21-8-14-10-6-5-9(13)7-11(10)18-12(14)15/h5-7H,3-4,8H2,1-2H3
|
Chemical Name |
6-chloro-3-(diethoxyphosphinothioylsulfanylmethyl)-1,3-benzoxazol-2-one
|
Synonyms |
Fozalon; Azofene; Phosalone
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ≥ 41 mg/mL (~111.47 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.7189 mL | 13.5947 mL | 27.1894 mL | |
5 mM | 0.5438 mL | 2.7189 mL | 5.4379 mL | |
10 mM | 0.2719 mL | 1.3595 mL | 2.7189 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.