yingweiwo

Pioglitazone potassium

Alias: Pioglitazone (potassium salt); 1266523-09-4; Pioglitazone potassium; X1ZX7RX9WU; Pioglitazone (potassium); UNII-X1ZX7RX9WU; potassium;5-[[4-[2-(5-ethylpyridin-2-yl)ethoxy]phenyl]methyl]-1,3-thiazolidin-3-ide-2,4-dione; 2,4-Thiazolidinedione, 5-((4-(2-(5-ethyl-2-pyridinyl)ethoxy)phenyl)methyl)-, potassium salt (1:1);
Cat No.:V44259 Purity: ≥98%
Pioglitazone potassium, PPARγ (peroxisome proliferator-activated receptor) agonist
Pioglitazone potassium
Pioglitazone potassium Chemical Structure CAS No.: 1266523-09-4
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Pioglitazone potassium:

  • Pioglitazone
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Pioglitazone potassium (U-72107) is a PPARγ (peroxisome proliferator-activated receptor) agonist with anti-diabetic effects. It has EC50s of 0.93 μM and 0.99 μM for human and mouse PPARγ, respectively.

Biological Activity I Assay Protocols (From Reference)
Targets
hPPARγ (EC50 = 0.93 μM) mouse PPARγ (EC50 = 0.99 μM); hPPARδ (EC50 = 43 μM); hPPARα (EC50 = 100 μM); mouse PPARα (EC50 = 100 μM)
ln Vitro
The pancreatic β-cell line T15 can avoid AGEs-induced HIT-impaired cell viability by totally preventing AGEs-induced β-cell necrosis and the rise of caspase-3, with pioglitazone potassium (0.5 or 1 μM, 5 days) being the most effective treatment to prevent these events [2]. Pioglitazone potassium (1 μM, 1 h) can lower the GSSG/GSH ratio in AGE-cultured cells and increase insulin secretion triggered by low glucose concentrations [2].
ln Vivo
Pioglitazone potassium (oral gavage, 10 or 30 mg/kg once daily for 14 days) reduces insulin resistance and diabetes, perhaps in a lipocalin-dependent way in the liver but not in skeletal muscle[3] . Pioglitazone potassium (oral gavage, 10 mg/kg, once day, 4 weeks) can dramatically reduce body weight (BW), cardiac hypertrophy, increased blood glucose levels and ameliorate associated dyslipidemia [4].
Pioglitazone, taken orally once daily for 14 days at a dose of 10 or 30 mg/kg, improves diabetes and insulin resistance; this effect may be lipocalin-dependent in the liver but not in the skeletal muscle [3]. Pioglitazone (oral gavage, 10 mg/kg, once daily, for four weeks) can alleviate dyslipidemia associated with it, raise blood glucose levels, and considerably reduce body weight (BW) and cardiac hypertrophy [4].
Thiazolidinediones have been shown to up-regulate adiponectin expression in white adipose tissue and plasma adiponectin levels, and these up-regulations have been proposed to be a major mechanism of the thiazolidinedione-induced amelioration of insulin resistance linked to obesity. To test this hypothesis, we generated adiponectin knock-out (adipo-/-) ob/ob mice with a C57B/6 background. After 14 days of 10 mg/kg pioglitazone, the insulin resistance and diabetes of ob/ob mice were significantly improved in association with significant up-regulation of serum adiponectin levels. Amelioration of insulin resistance in ob/ob mice was attributed to decreased glucose production and increased AMP-activated protein kinase in the liver but not to increased glucose uptake in skeletal muscle. In contrast, insulin resistance and diabetes were not improved in adipo-/-ob/ob mice. After 14 days of 30 mg/kg pioglitazone, insulin resistance and diabetes of ob/ob mice were again significantly ameliorated, which was attributed not only to decreased glucose production in the liver but also to increased glucose uptake in skeletal muscle. Interestingly, adipo-/-ob/ob mice also displayed significant amelioration of insulin resistance and diabetes, which was attributed to increased glucose uptake in skeletal muscle but not to decreased glucose production in the liver. The serum-free fatty acid and triglyceride levels as well as adipocyte sizes in ob/ob and adipo-/-ob/ob mice were unchanged after 10 mg/kg pioglitazone but were significantly reduced to a similar degree after 30 mg/kg pioglitazone. Moreover, the expressions of TNFalpha and resistin in adipose tissues of ob/ob and adipo-/-ob/ob mice were unchanged after 10 mg/kg pioglitazone but were decreased after 30 mg/kg pioglitazone. Thus, pioglitazone-induced amelioration of insulin resistance and diabetes may occur adiponectin dependently in the liver and adiponectin independently in skeletal muscle.[3]
Pioglitazone has been demonstrated to have beneficial effects on cardiovascular outcomes. However, little is known about its effect on cardiac remodeling associated with diabetic nephropathy. Therefore, this study was designed to study the effects of pioglitazone on cardiac fibrosis and hypertrophy in a rat model of diabetic nephropathy. For this purpose, male Wistar albino rats were randomly assigned into 4 groups (n = 10 per group): normal (N) group, diabetic (D) group, diabetic nephropathic (DN) group received an equal amount of vehicle (0.5% carboxy methyl cellulose), and diabetic nephropathic group treated by oral administration of pioglitazone (10 mg/kg per d) for 4 weeks. Diabetic nephropathy was induced by subtotal nephrectomy plus streptozotocin (STZ) injection. The results revealed that DN rats showed excessive deposition of collagen fibers in their cardiac tissue, along with a marked myocyte hypertrophy. This was associated with a dramatic upregulation of cardiac transforming growth factor-β1 (TGF-β1) gene. Furthermore, the gene expression of matrix metalloproteinase 2 (MMP-2) decreased, while the gene expression of tissue inhibitor of metalloproteinase 2 (TIMP-2) increased in the hearts of DN rats. In addition, enhanced lipid peroxidation and myocardial injury, evidenced by a significant increase in their serum creatine kinase-MB level were observed in DN rats. All these abnormalities were ameliorated by pioglitazone administration. Our findings suggest that upregulation of cardiac TGF-β1 gene along with the imbalance between MMP-2 and TIMP-2 expressions is critically involved in cardiac fibrosis associated with diabetic nephropathy. Pioglitazone can ameliorate cardiac remodeling by suppressing the gene expression of TGF-β1 and regulating the MMP-2/TIMP-2 system[4].
Cell Assay
Pioglitazone is an anti-diabetic agent that preserves pancreatic beta cell mass and improves their function. Advanced Glycation End-Products (AGEs) are implicated in diabetic complications. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs significantly decreases cell proliferation and insulin secretion, and affects transcription factors regulating insulin gene transcription. The aim of this work was to investigate the effects of Pioglitazone on the function and viability of HIT-T15 cells cultured with AGEs. HIT-T15 cells were cultured for 5 days in the presence of AGEs alone, or supplemented with 1 μmol/l Pioglitazone. Cell viability, insulin secretion and insulin content, redox balance, expression of the AGE receptor (RAGE), and NF-kB activation were then determined. The results showed that Pioglitazone protected beta cells against AGEs-induced apoptosis and necrosis. Moreover, Pioglitazone restored the redox balance and improved the responsiveness to low glucose concentration. Adding Pioglitazone to the AGEs culture attenuated NF-kB phosphorylation, and prevented AGEs to down-regulate IkBα expression. These findings suggest that Pioglitazone protects beta cells from the dangerous effects of AGEs[2].
Animal Protocol
Animal/Disease Models: ob/ob and adipo-/- ob/ob mice on C57Bl/6 background [3]
Doses: 10 or 30 mg/kg
Route of Administration: po (oral gavage); one time/day; 14-day
Experimental Results: ob/ Serum free fatty acid and triglyceride levels and adipocyte size were unchanged in ob and adipo-/- ob/ob C57BL/6 mice at the 10 mg/kg dose, but were Dramatically diminished to similar levels at the 10 mg/kg dose. degree. 30 mg/kg. It was also shown that the expression of TNFα and resistin in the adipose tissue of ob/ob and adipo-/- ob/ob mice was unchanged at the 10 mg/kg dose but diminished at the 30 mg/kg dose.

Animal/Disease Models: Male Wistar albino rat [4]
Doses: 10 mg/kg
Route of Administration: po (oral gavage); one time/day; 4-week
Experimental Results: Reduce elevated serum creatinine and creatine kinase MB (CK-MB) levels, TGF-β1 gene expression and regulates the expression of MMP-2/TIMP-2 system.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Absorption
Following oral administration of pioglitazone, peak serum concentrations are observed within 2 hours (Tmax) - food slightly delays the time to peak serum concentration, increasing Tmax to approximately 3-4 hours, but does not alter the extent of absorption. Steady-state concentrations of both parent drug and its primary active metabolites are achieved after 7 days of once-daily administration of pioglitazone. Cmax and AUC increase proportionately to administered doses.

Route of Elimination
Approximately 15-30% of orally administered pioglitazone is recovered in the urine. The bulk of its elimination, then, is presumed to be through the excretion of unchanged drug in the bile or as metabolites in the feces.

Volume of Distribution
The average apparent volume of distribution of pioglitazone is 0.63 ± 0.41 L/kg.

Clearance
The apparent clearance of orally administered pioglitazone is 5-7 L/h.

There was no significant difference in the pharmacokinetic profile of pioglitazone in subjects with normal or with moderately impaired renal function. In patients with moderate and severe renal impairment, although mean serum concentrations of pioglitazone and its metabolites were increased, no dose adjustment is needed. After repeated oral doses of pioglitazone, mean AUC values were decreased in patients with severe renal impairment compared with healthy subjects with normal renal function for pioglitazone.

Following oral administration, approximately 15% to 30% of the pioglitazone dose is recovered in the urine. Renal elimination of pioglitazone is negligible, and the drug is excreted primarily as metabolites and their conjugates. It is presumed that most of the oral dose is excreted into the bile either unchanged or as metabolites and eliminated in the feces.

Pioglitazone is a thiazolidinedione insulin sensitizer that has shown efficacy in Type 2 diabetes and nonalcoholic fatty liver disease in humans. It may be useful for treatment of similar conditions in cats. The purpose of this study was to investigate the pharmacokinetics of pioglitazone in lean and obese cats, to provide a foundation for assessment of its effects on insulin sensitivity and lipid metabolism. Pioglitazone was administered intravenously (median 0.2 mg/kg) or orally (3 mg/kg) to 6 healthy lean (3.96 +/- 0.56 kg) and 6 obese (6.43 +/- 0.48 kg) cats, in a two by two Latin Square design with a 4-week washout period. Blood samples were collected over 24 hr, and pioglitazone concentrations were measured via a validated high-performance liquid chromatography assay. Pharmacokinetic parameters were determined using two-compartmental analysis for IV data and noncompartmental analysis for oral data. After oral administration, mean bioavailability was 55%, t(1/2) was 3.5 h, T(max) was 3.6 hr, C(max) was 2131 ng/mL, and AUC(0-8) was 15,56 ng/mL/hr. There were no statistically significant differences in pharmacokinetic parameters between lean and obese cats following either oral or intravenous administration. Systemic exposure to pioglitazone in cats after a 3 mg/kg oral dose approximates that observed in humans with therapeutic doses. PMID:22612529

The mean apparent volume of distribution (Vd/F) of pioglitazone following single-dose administration is 0.63 +/- 0.41 (mean +/- SD) L/kg of body weight. Pioglitazone is extensively protein bound (> 99%) in human serum, principally to serum albumin. Pioglitazone also binds to other serum proteins, but with lower affinity. M-III (keto derivative of pioglitazone) and M-IV (hydroxyl derivative of pioglitazone) are also extensively bound (> 98%) to serum albumin.
View More


Metabolism / Metabolites
Pioglitazone is extensively metabolized by both hydroxylation and oxidation - the resulting metabolites are also partly converted to glucuronide or sulfate conjugates. The pharmacologically active M-IV and M-III metabolites are the main metabolites found in human serum and their circulating concentrations are equal to, or greater than, those of the parent drug. The specific CYP isoenzymes involved in the metabolism of pioglitazone are CYP2C8 and, to a lesser degree, CYP3A4. There is also some evidence to suggest a contribution by extrahepatic CYP1A1.

Isoforms of cytochrome P450 (CYP) are involved in the metabolism of pioglitazone, including CYP2C8 and, to a lesser degree, CYP3A4. CYP2C9 is not significantly involved in the elimination of pioglitazone. Pioglitazone is not a strong inducer of CYP3A4, and pioglitazone was not shown to induce CYPs.

Pioglitazone is extensively metabolized by hydroxylation and oxidation; the metabolites also partly convert to glucuronide or sulfate conjugates. Metabolites M-III (keto derivative of pioglitazone) and M-IV (hydroxyl derivative of pioglitazone) are the major circulating active metabolites in humans.

Pioglitazone has known human metabolites that include 2-[6-(2-{4-[(2,4-dioxo-1,3-thiazolidin-5-yl)methyl]phenoxy}ethyl)pyridin-3-yl]acetic acid, 5-[(4-{2-[5-(1-hydroxyethyl)pyridin-2-yl]ethoxy}phenyl)methyl]-1,3-thiazolidine-2,4-dione, and 5-({4-[2-(5-ethylpyridin-2-yl)-2-hydroxyethoxy]phenyl}methyl)-1,3-thiazolidine-2,4-dione.
Biological Half-Life
The mean serum half-life of pioglitazone and its metabolites (M-III and M-IV) range from 3-7 hours and 16-24 hours, respectively.

The mean serum half-life of pioglitazone and its metabolites (M-III and M-IV) range from three to seven hours and 16 to 24 hours, respectively.

Toxicity/Toxicokinetics
Toxicity Summary
IDENTIFICATION AND USE: Pioglitazone is a solid. It is used as hypoglycemic agent as an adjunct to diet and exercise for the management of type 2 diabetes mellitus. HUMAN STUDIES: Pioglitazone hydrochloride is a thiazolidinedione that depends on the presence of insulin for its mechanism of action. Pioglitazone hydrochloride decreases insulin resistance in the periphery and in the liver resulting in increased insulin-dependent glucose disposal and decreased hepatic glucose output. Pioglitazone is an agonist for peroxisome proliferator-activated receptor-gamma (PPARgamma). PPAR receptors are found in tissues important for insulin action such as adipose tissue, skeletal muscle, and liver. Activation of PPARgamma nuclear receptors modulates the transcription of a number of insulin responsive genes involved in the control of glucose and lipid metabolism. No evidence of hepatotoxicity has been noted with pioglitazone in clinical studies to date. However, hepatitis, liver function test abnormalities (such as elevations in hepatic enzymes to at least 3 times the upper limit of normal), mixed hepatocellular-cholestatic liver injury, and liver failure with or without fatalities have been reported during postmarketing experience with the drug. Thiazolidinediones, including pioglitazone hydrochloride, cause or exacerbate congestive heart failure in some patients. Pioglitazone-induced heart failure is known in patients with underlying heart disease, but is not well documented in patients with normal left ventricular function. It has been however reported that a patient developed congestive heart failure and pulmonary edema with normal left ventricular function within 1 year of starting pioglitazone therapy. Patients treated with pioglitazone have increased risk of bladder cancer compared to general population. There was also described an association of pioglitazone use with an increased risk of newly developed chronic kidney disease. ANIMAL STUDIES: Heart enlargement was seen in a 13-week study in monkeys at oral doses of 8.9 mg/kg and above, but not in a 52-week study at oral doses up to 32 mg/kg. Heart enlargement has been observed in mice (100 mg/kg), rats (4 mg/kg and above) and dogs (3 mg/kg) treated orally with pioglitazone hydrochloride. In a one-year rat study, drug-related early death due to apparent heart dysfunction occurred at an oral dose of 160 mg/kg/day. A two-year carcinogenicity study was conducted in male and female rats at oral doses up to 63 mg/kg. Drug-induced tumors were not observed in any organ except for the urinary bladder. A two-year carcinogenicity study was conducted in male and female mice at oral doses up to 100 mg/kg/day. No drug-induced tumors were observed in any organ. No adverse effects upon fertility were observed in male and female rats at oral doses up to 40 mg/kg pioglitazone hydrochloride daily prior to and throughout mating and gestation. Pioglitazone administered to pregnant rats during organogenesis did not cause adverse developmental effects at a dose of 20 mg/kg. When pregnant rats received pioglitazone during late gestation and lactation, delayed postnatal development, attributed to decreased body weight, occurred in offspring at maternal doses of 10 mg/kg and above. In pregnant rabbits administered pioglitazone during organogenesis, no adverse developmental effects were observed at 80 mg/kg, but reduced embryofetal viability at 160 mg/kg. Pioglitazone hydrochloride was not mutagenic in a battery of genetic toxicology studies, including the Ames bacterial assay, a mammalian cell forward gene mutation assay, an in vitro cytogenetics assay using CHL cells, an unscheduled DNA synthesis assay, and an in vivo micronucleus assay.

Pioglitazone acts as an agonist at peroxisome proliferator activated receptors (PPAR) in target tissues for insulin action such as adipose tissue, skeletal muscle, and liver. Activation of PPAR-gamma receptors increases the transcription of insulin-responsive genes involved in the control of glucose production, transport, and utilization. In this way, pioglitazone both enhances tissue sensitivity to insulin and reduces hepatic gluconeogenesis. Thus, insulin resistance associated with type 2 diabetes mellitus is improved without an increase in insulin secretion by pancreatic β cells.
View More

Hepatotoxicity
In contrast to troglitazone, pioglitazone is not associated with an increased frequency of aminotransferase elevations during therapy. In clinical trials, ALT elevations above 3 times the ULN occurred in only 0.26% of patients on pioglitazone, compared to 0.25% of placebo recipients (and 1.9% of troglitazone recipients in similar studies). In addition, clinically apparent liver injury attributed to pioglitazone is very rare, fewer than a dozen cases having been described in the literature despite extensive use of this agent. The liver injury usually arises between 1 and 6 months after starting therapy and all patterns of serum enzymes elevations have been described including hepatocellular, cholestatic and mixed. Allergic phenomena are rare and autoantibodies have not been typically present. Cases of acute liver failure attributed to pioglitazone have been reported, usually in association with a hepatocellular pattern of injury. In most instances, recovery is complete within 2 to 3 months.
Likelihood score: C (probable rare cause of clinically apparent liver injury).


◉ Summary of Use during Lactation
No information is available on the clinical use of pioglitazone during breastfeeding. Pioglitazone is over 99% protein bound in plasma, so it is unlikely to pass into breastmilk in clinically important amounts. However, an alternate drug may be preferred, especially while nursing a newborn or preterm infant.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.

◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Exposure Routes
Following oral administration, in the fasting state, pioglitazone is first measurable in serum within 30 minutes, with peak concentrations observed within 2 hours. Food slightly delays the time to peak serum concentration to 3 to 4 hours, but does not alter the extent of absorption.
Toxicity Data
Hypogycemia; LD50=mg/kg (orally in rat)
Interactions
The aim was to investigate the effects of coadministration of the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin with the thiazolidinedione pioglitazone. In study 1, 20 healthy volunteers received 50 mg of empagliflozin alone for 5 days, followed by 50 mg of empagliflozin coadministered with 45 mg of pioglitazone for 7 days and 45 mg of pioglitazone alone for 7 days in 1 of 2 treatment sequences. In study 2, 20 volunteers received 45 mg of pioglitazone alone for 7 days and 10, 25, and 50 mg of empagliflozin for 9 days coadministered with 45 mg of pioglitazone for the first 7 days in 1 of 4 treatment sequences. Pioglitazone exposure (Cmax and AUC) increased when coadministered with empagliflozin versus monotherapy in study 1. The geometric mean ratio (GMR) for pioglitazone Cmax at steady state (Cmax,ss) and for AUC during the dosing interval at steady state (AUCt,ss) when coadministered with empagliflozin versus administration alone was 187.89% (95% CI, 166.35%-212.23%) and 157.97% (95% CI, 148.02%-168.58%), respectively. Because an increase in pioglitazone exposure was not expected, based on in vitro data, a second study was conducted with the empagliflozin doses tested in Phase III trials. In study 2, pioglitazone exposure decreased marginally when coadministered with empagliflozin. The GMR for pioglitazone Cmax,ss when coadministered with empagliflozin versus administration alone was 87.74% (95% CI, 73.88%-104.21%) with empagliflozin 10 mg, 90.23% (95% CI, 66.84%-121.82%) with empagliflozin 25 mg, and 89.85% (95% CI, 71.03%-113.66%) with empagliflozin 50 mg. The GMR for pioglitazone AUCt,ss when coadministered with empagliflozin versus administration alone was 90.01% (95% CI, 77.91%-103.99%) with empagliflozin 10 mg, 88.98% (95% CI, 72.69%-108.92%) with empagliflozin 25 mg, and 91.10% (95% CI, 77.40%-107.22%) with empagliflozin 50 mg. The effects of empagliflozin on pioglitazone exposure are not considered to be clinically relevant. Empagliflozin exposure was unaffected by coadministration with pioglitazone. Empagliflozin and pioglitazone were well tolerated when administered alone or in combination. In study 1, adverse events were reported in 1 of 19 participants on empagliflozin 50 mg alone, 4 of 20 on pioglitazone alone, and 5 of 18 on combination treatment. In study 2, adverse events were reported in 8 of 20 participants on pioglitazone alone, 10 of 18 when coadministered with empagliflozin 10 mg, 5 of 17 when coadministered with empagliflozin 25 mg, and 6 of 16 when coadministered with empagliflozin 50 mg. These results indicate that pioglitazone and empagliflozin can be coadministered without dose adjustments. PMID:26051874

The thiazolidinedione antidiabetic drug pioglitazone is metabolized mainly by cytochrome P450 (CYP) 2C8 and CYP3A4 in vitro. Our objective was to study the effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics of pioglitazone to determine the role of these enzymes in the fate of pioglitazone in humans. In a randomized, double-blind, 4-phase crossover study, 12 healthy volunteers took either 600 mg gemfibrozil or 100 mg itraconazole (first dose, 200 mg), both gemfibrozil and itraconazole, or placebo twice daily for 4 days. On day 3, they received a single dose of 15 mg pioglitazone. Plasma drug concentrations and the cumulative excretion of pioglitazone and its metabolites into urine were measured for up to 48 hours. RESULTS: Gemfibrozil alone raised the mean total area under the plasma concentration-time curve from time 0 to infinity [AUC(0-infinity)] of pioglitazone 3.2-fold (range, 2.3-fold to 6.5-fold; P < 0.001) and prolonged its elimination half-life (t (1/2) ) from 8.3 to 22.7 hours ( P < .001) but had no significant effect on its peak concentration (C max ) compared with placebo (control). Gemfibrozil increased the 48-hour excretion of pioglitazone into urine by 2.5-fold ( P < 0.001) and reduced the ratios of the active metabolites M-III and M-IV to pioglitazone in plasma and urine. Gemfibrozil decreased the area under the plasma concentration-time curve from time 0 to 48 hours [AUC(0-48)] of the metabolites M-III and M-IV by 42% ( P < 0.05) and 45% ( P < 0.001), respectively, but their total AUC(0-infinity) values were reduced by less or not at all. Itraconazole had no significant effect on the pharmacokinetics of pioglitazone and did not alter the effect of gemfibrozil on pioglitazone pharmacokinetics. The mean area under the concentration versus time curve to 49 hours [AUC(0-49)] of itraconazole was 46% lower ( P <0.001) during the gemfibrozil-itraconazole phase than during the itraconazole phase. Gemfibrozil elevates the plasma concentrations of pioglitazone, probably by inhibition of its CYP2C8-mediated metabolism. CYP2C8 appears to be of major importance and CYP3A4 of minor importance in pioglitazone metabolism in vivo in humans. Concomitant use of gemfibrozil with pioglitazone may increase the effects and risk of dose-related adverse effects of pioglitazone. However, studies in diabetic patients are needed to determine the clinical significance of the gemfibrozil-pioglitazone interaction. PMID:15900286

Domperidone (prokinetic agent) is frequently co-administered with pioglitazone (anitidiabetic) or ondansetron (antiemetic) in gastroparesis management. These drugs are metabolized via cytochome P-450 (CYP) 3A4, raising the possibility of interaction and adverse reactions. The concentration-dependent inhibitory effect of pioglitazone and ondansetron on domperidone hydroxylation was monitored in pooled human liver microsomes (HLM). Pioglitazone was further assessed as a mechanism-based inhibitor. Microsomal binding was evaluated in our assessment. In HLM, Vmax/Km estimates for monohydroxy domperidone formation decreased in presence of pioglitazone. Diagnostic plots indicated that pioglitazone inhibited domperidone in a partial mixed-type manner. The in vitro Ki was 1.52 uM. Predicted in vivo AUCi/AUC ratio was 1.98. Pioglitazone also exerted time-dependent inhibition on the metabolism of domperidone and the average remaining enzymatic activity decreased significantly upon preincubation with pioglitazone over 0-40 min. Diagnostic plots showed no inhibitory effect of ondansetron on domperidone hydroxylation. In conclusion, pioglitazone inhibited domperidone metabolism in vitro through different complex mechanisms. Our in vitro data predict that the co-administration of these drugs can potentially trigger an in vivo drug-drug interaction. PMID:24641107

/The objective of this study was/ to investigate potential drug-drug interactions between topiramate and metformin and pioglitazone at steady state. Two open-label studies were performed in healthy adult men and women. In Study 1, eligible participants were given metformin alone for 3 days (500 mg twice daily (BID)) followed by concomitant metformin and topiramate (titrated to 100 mg BID) from days 4 to 10. In Study 2, eligible participants were randomly assigned to treatment with pioglitazone 30 mg once daily (QD) alone for 8 days followed by concomitant pioglitazone and topiramate (titrated to 96 mg BID) from days 9 to 22 (Group 1) or to topiramate (titrated to 96 mg BID) alone for 11 days followed by concomitant pioglitazone 30 mg QD and topiramate 96 mg BID from days 12 to 22 (Group 2). An analysis of variance was used to evaluate differences in pharmacokinetics with and without concomitant treatment; 90% confidence intervals (CI) for the ratio of the geometric least squares mean (LSM) estimates for maximum plasma concentration (Cmax), area under concentration-time curve for dosing interval (AUC12 or AUC24), and oral clearance (CL/F) with and without concomitant treatment were used to assess a drug interaction. A comparison to historical data suggested a modest increase in topiramate oral clearance when given concomitantly with metformin. Coadministration with topiramate reduced metformin oral clearance at steady state, resulting in a modest increase in systemic metformin exposure. Geometric LSM ratios and 90% CI for metformin CL/F and AUC12 were 80% (75%, 85%) and 125% (117%, 134%), respectively. Pioglitazone had no effect on topiramate pharmacokinetics at steady state. Concomitant topiramate resulted in decreased systemic exposure to pioglitazone and its active metabolites, with geometric LSM ratios and 90% CI for AUC24 of 85.0% (75.7%, 95.6%) for pioglitazone, 40.5% (36.8%, 44.6%) for M-III, and 83.8% (76.1%, 91.2%) for M-IV, respectively. This effect appeared more pronounced in women than in men. Coadministration of topiramate with metformin or pioglitazone was generally well tolerated by healthy participants in these studies. A modest increase in metformin exposure and decrease in topiramate exposure was observed at steady state following coadministration of metformin 500 mg BID and topiramate 100mg BID. The clinical significance of the observed interaction is unclear but is not likely to require a dose adjustment of either agent. Pioglitazone 30 mg QD did not affect the pharmacokinetics of topiramate at steady state, while coadministration of topiramate 96 mg BID with pioglitazone decreased steady-state systemic exposure to pioglitazone, M-III, and M-IV. While the clinical consequence of this interaction is unknown, careful attention should be given to the routine monitoring for adequate glycemic control of patients receiving this concomitant therapy. Concomitant administration of topiramate with metformin or pioglitazone was generally well tolerated and no new safety concerns were observed. PMID:25219351
Protein Binding
Pioglitazone is >99% protein-bound in human plasma - binding is primarily to albumin, although pioglitazone has been shown to bind other serum proteins with a lower affinity. The M-III and M-IV metabolites of pioglitazone are >98% protein-bound (also primarily to albumin).
Ecological Information
Environmental Fate / Exposure Summary
Pioglitazone's production and administration as a medication may result in its release to the environment through various waste streams. If released to air, an estimated vapor pressure of 2.9X10-14 mm Hg at 25 °C indicates pioglitazone will exist solely in the particulate phase in the atmosphere. Particulate-phase pioglitazone will be removed from the atmosphere by wet and dry deposition. Pioglitazone contains pyridine- and anisole-like functional groups that do not absorb UV light at wavelengths >290 nm and, therefore, may be susceptible to direct photolysis by sunlight. If released to soil, pioglitazone is expected to be immobile based upon an estimated Koc of 9000. Volatilization from moist soil surfaces is not expected to be an important fate process based upon an estimated Henry's Law constant of 1.7X10-12 atm-cu m/mole. Pioglitazone is not expected to volatilize from dry soil surfaces based upon its vapor pressure. Biodegradation data ln soil or water where not available. If released into water, pioglitazone is expected to adsorb to suspended solids and sediment based upon the estimated Koc. Volatilization from water surfaces is not expected to be an important fate process based upon this compound's estimated Henry's Law constant. An estimated BCF of 190 suggests the potential for bioconcentration in aquatic organisms is high. Hydrolysis is not expected to be an important environmental fate process since this compound lacks functional groups that hydrolyze under environmental conditions (pH 5 to 9). Occupational exposure to pioglitazone may occur through inhalation and dermal contact with this compound at workplaces where pioglitazone is produced or used. The general public is not likely to be exposed to pioglitazone unless by direct medical treatment. (SRC)
History and Incidents
Rosiglitazone was approved by the U.S. Food and Drug Administration (FDA) for type 2 diabetes in 1999. The unique mechanism of action and low risk of hypoglycemia contributed to rapid market uptake of rosiglitazone, but safety concerns became more prominent in 2007. There were 5 major events on 4 calendar days in 2007 regarding safety concerns related to rosiglitazone in certain patients: (1) the May 21, 2007, online release of the rosiglitazone meta-analysis performed by Nissen and Wolski and the FDA safety warning on the same day; (2) the July 30, 2007, conclusion of an FDA advisory committee meeting that rosiglitazone increased cardiac ischemic risk; (3) the August 14, 2007, update of thiazolidinedione (TZD) labels with a black-box warning for heart failure; and (4) the November 14, 2007, update to the warnings and precautions section of the rosiglitazone label for coadministration of nitrate or insulin. /The purpose of this paper was/ to (1) describe TZD (rosiglitazone and pioglitazone) utilization trends from January 1, 2007, continuing through May 2008 amid public announcements of safety concerns and (2) determine the percentage of TZD users who had medical claims indicating increased cardiovascular (CV) risk before and after release (May 21, 2007) of the FDA safety warning and online release of the meta-analysis performed by Nissen and Wolski. A retrospective analysis of pharmacy claims was performed from 9 commercial plans with a combined 9 million eligible members, including a 1.4 million-member cohort from 1 of the plans for which medical claims data were available. We evaluated trends in TZD use for each month for the 17-month period from January 1, 2007, through May 31, 2008, including the percentage of TZD users at increased CV risk. In the trend analysis, for each calendar month of 2007, we calculated mean pharmacy claim counts per day per million members for each of the 2 TZD drugs and for a comparison drug, sitagliptin, a new oral hypoglycemic agent in a different class (dipeptidyl-peptidase-IV inhibitors). For the CV risk analysis, we used the database of integrated medical and pharmacy claims for the 1.4 million-member cohort to identify patients with a current days supply of a TZD on May 20, 2007, December 7, 2007, or May 20, 2008. The medical claims for all identified patients were queried back 2 years from May 20, 2007, December 7, 2007, or May 20, 2008, respectively. Rosiglitazone users at increased CV rsk were defined as those with a medical claim with a primary diagnosis for congestive heart failure (CHF; International Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] codes 428.xx or 398.91), those with a current supply of nitrate or insulin therapy, or those with ischemic heart disease, including myocardial infarction (MI; ICD-9-CM codes 410.xx through 414.xx, or surgical procedure codes [36.0x through 36.3x for removal of obstruction and insertion of stents, bypass surgery, and revascularization] in the primary diagnosis field). Pioglitazone users at increased risk were identified from medical claims with a CHF diagnosis code. The average number of claims per day per million members in January 2007 was 97.3 for rosiglitazone and 107.2 for pioglitazone. The average number of claims for rosiglitazone per day per million members began to decrease in May 2007, falling to 41.0 in December 2007, for a total decrease of 58.6% from the February 2007 peak (99.1), and fell further to 31.8 in May 2008. Pioglitazone use increased 8.0% from January to June 2007 (107.2 to 115.8) and remained relatively flat through December 2007 (114.6) and through May 2008 (108.9). Sitagliptin claims increased 5-fold, at a consistent rate, from an average of 8.6 claims per day per million members in January 2007 to 43.4 in December 2007, and continued to increase to 48.7, in May 2008. Of the 5,117 rosiglitazone users on May 20, 2007, 1,296 (25.3%) were identified at increased CV risk versus 590 (22.5%) of 2,621 users on December 7, 2007 (P = 0.006), and 336 (21.8%) of 1,541 users in May 2008 (P = 0.005). Of 6,056 pioglitazone users on May 20, 2007, 170 (2.8%) had a CHF diagnosis versus 160 (2.5%) of 6,275 users on December 7, 2007 (P = 0.376), and 122 of 5,998 users in May 2008 (P = 0.006). Although rosiglitazone utilization per million members declined by more than half in 2007, when CV safety concerns started to emerge, about 1 in 5 rosiglitazone users had elevated CV risk at year-end 2007 and in May 2008. About 3% of pioglitazone users in May 2007 had a diagnosis of CHF in claims history, which declined to 2% in May 2008. Insurers should consider the impact of persistent utilization of TZDs among members with CV risk factors when making formulary decisions.

References

[1]. A novel selective peroxisome proliferator-activated receptor alpha agonist,2-methyl-c-5-[4-[5-methyl-2-(4-methylphenyl)-4-oxazolyl]butyl]-1,3-dioxane-r-2-carboxylic acid (NS-220), potently decreases plasma triglyceride and glucose l.

[2]. Pioglitazone attenuates the detrimental effects of advanced glycation end-products in the pancreatic beta cell line HIT-T15. Regul Pept. 2012 Aug 20;177(1-3):79-84.

[3]. Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin-dependent and -independent pathways. J Biol Chem. 2006 Mar 31;281(13):8748-55.

[4]. Pioglitazone attenuates cardiac fibrosis and hypertrophy in a rat model of diabetic nephropathy. J Cardiovasc Pharmacol Ther. 2012 Sep;17(3):324-33.

Additional Infomation
Pioglitazone can cause cancer according to California Labor Code.
Pioglitazone is a member of the class of thiazolidenediones that is 1,3-thiazolidine-2,4-dione substituted by a benzyl group at position 5 which in turn is substituted by a 2-(5-ethylpyridin-2-yl)ethoxy group at position 4 of the phenyl ring. It exhibits hypoglycemic activity. It has a role as an insulin-sensitizing drug, an EC 2.7.1.33 (pantothenate kinase) inhibitor, a xenobiotic, an EC 6.2.1.3 (long-chain-fatty-acid--CoA ligase) inhibitor, a ferroptosis inhibitor, a cardioprotective agent, a PPARgamma agonist, an antidepressant, Pioglitazone hydrochloride is an aromatic ether.
Pioglitazone Hydrochloride is the hydrochloride salt of an orally-active thiazolidinedione with antidiabetic properties and potential antineoplastic activity. Pioglitazone activates peroxisome proliferator-activated receptor gamma (PPAR-gamma), a ligand-activated transcription factor, thereby inducing cell differentiation and inhibiting cell growth and angiogenesis. This agent also modulates the transcription of insulin-responsive genes, inhibits macrophage and monocyte activation, and stimulates adipocyte differentiation.
A thiazolidinedione and PPAR GAMMA agonist that is used in the treatment of TYPE 2 DIABETES MELLITUS.
Pioglitazone is an antihyperglycemic used as an adjunct to diet, exercise, and other antidiabetic medications to manage type 2 diabetes mellitus. It is administered as a racemic mixture, though there is no pharmacologic difference between the enantiomers and they appear to interconvert in vivo with little consequence. The thiazolidinedione class of medications, which also includes [rosiglitazone] and [troglitazone], exerts its pharmacological effect primarily by promoting insulin sensitivity and the improved uptake of blood glucose via agonism at the peroxisome proliferator-activated receptor-gamma (PPARγ). PPARs are ligand-activated transcription factors that are involved in the expression of more than 100 genes and affect numerous metabolic processes, most notably lipid and glucose homeostasis. Thiazolidinediones, including pioglitazone, have fallen out of favor in recent years due to the presence of multiple adverse effects and warnings regarding their use (e.g. congestive heart failure, bladder cancer) and the availability of safer and more effective alternatives for patients with type 2 diabetes mellitus.

Pioglitazone is a Peroxisome Proliferator Receptor alpha Agonist, and Peroxisome Proliferator Receptor gamma Agonist, and Thiazolidinedione. The mechanism of action of pioglitazone is as a Peroxisome Proliferator-activated Receptor alpha Agonist, and Peroxisome Proliferator-activated Receptor gamma Agonist.
Pioglitazone is an insulin sensitizing agent and thiazolidinedione that is indicated for the treatment of type 2 diabetes. Pioglitazone has been linked to rare instances of acute liver injury.

Pioglitazone is an orally-active thiazolidinedione with antidiabetic properties and potential antineoplastic activity. Pioglitazone activates peroxisome proliferator-activated receptor gamma (PPAR-gamma), a ligand-activated transcription factor, thereby inducing cell differentiation and inhibiting cell growth and angiogenesis. This agent also modulates the transcription of insulin-responsive genes, inhibits macrophage and monocyte activation, and stimulates adipocyte differentiation.

Pioglitazone is used for the treatment of diabetes mellitus type 2. Pioglitazone selectively stimulates nuclear receptor peroxisone proliferator-activated receptor gamma (PPAR-gamma). It modulates the transcription of the insulin-sensitive genes involved in the control of glucose and lipid metabolism in the lipidic, muscular tissues and in the liver.
A thiazolidinedione and PPAR GAMMA agonist that is used in the treatment of TYPE 2 DIABETES MELLITUS.
View More

Drug Indication
Pioglitazone is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. It is also available in combination with [metformin], [glimepiride], or [alogliptin] for the same indication.

Pioglitazone is indicated in the treatment of type-2 diabetes mellitus: as monotherapy: in patients (particularly overweight patients) inadequately controlled by diet and exercise for whom metformin is inappropriate because of contraindications or intolerance; as dual oral therapy in combination with: metformin, in patients (particularly overweight patients) with insufficient glycaemic control despite maximal tolerated dose of monotherapy with metformin; a sulphonylurea, only in patients who show intolerance to metformin or for whom metformin is contraindicated, with insufficient glycaemic control despite maximal tolerated dose of monotherapy with a sulphonylurea; as triple oral therapy in combination with: metformin and a sulphonylurea, in patients (particularly overweight patients) with insufficient glycaemic control despite dual oral therapy. Pioglitazone is also indicated for combination with insulin in type-2 diabetes mellitus patients with insufficient glycaemic control on insulin for whom metformin is inappropriate because of contraindications or intolerance.

Pioglitazone is indicated as second or third line treatment of type 2 diabetes mellitus as described below: as monotherapyin adult patients (particularly overweight patients) inadequately controlled by diet and exercise for whom metformin is inappropriate because of contraindications or intolerance. as dual oral therapy in combination withmetformin, in adult patients (particularly overweight patients) with insufficient glycaemic control despite maximal tolerated dose of monotherapy with metformin. a sulphonylurea, only in adult patients who show intolerance to metformin or for whom metformin is contraindicated, with insufficient glycaemic control despite maximal tolerated dose of monotherapy with a sulphonylurea. as triple oral therapy in combination withmetformin and a sulphonylurea, in adult patients (particularly overweight patients) with insufficient glycaemic control despite dual oral therapy. Pioglitazone is also indicated for combination with insulin in type 2 diabetes mellitus adult patients with insufficient glycaemic control on insulin for whom metformin is inappropriate because of contraindications or intolerance (see section 4. 4). After initiation of therapy with pioglitazone, patients should be reviewed after 3 to 6 months to assess adequacy of response to treatment (e. g. reduction in HbA1c). In patients who fail to show an adequate response, pioglitazone should be discontinued. In light of potential risks with prolonged therapy, prescribers should confirm at subsequent routine reviews that the benefit of pioglitazone is maintained (see section 4. 4).

Pioglitazone is indicated in the treatment of type 2 diabetes mellitus: as monotherapy- in adult patients (particularly overweight patients) inadequately controlled by diet and exercise for whom metformin is inappropriate because of contraindications or intoleranceas dual oral therapy in combination with- metformin, in adult patients (particularly overweight patients) with insufficient glycaemic control despite maximal tolerated dose of monotherapy with metformin- a sulphonylurea, only in adult patients who show intolerance to metformin or for whom metformin is contraindicated, with insufficient glycaemic control despite maximal tolerated dose of monotherapy with a sulphonylureaas triple oral therapy in combination with- metformin and a sulphonylurea, in adult patients (particularly overweight patients) with insufficient glycaemic control despite dual oral therapy. Pioglitazone is also indicated for combination with insulin in type 2 diabetes mellitus adult patients with insufficient glycaemic control on insulin for whom metformin is inappropriate because of contraindications or intolerance. After initiation of therapy with pioglitazone, patients should be reviewed after 3 to 6 months to assess adequacy of response to treatment (e. g. reduction in HbA1c). In patients who fail to show an adequate response, pioglitazone should be discontinued. In light of potential risks with prolonged therapy, prescribers should confirm at subsequent routine reviews that the benefit of pioglitazone is maintained.

Pioglitazone is indicated as second or third line treatment of type-2 diabetes mellitus as described below: as monotherapy: in adult patients (particularly overweight patients) inadequately controlled by diet and exercise for whom metformin is inappropriate because of contraindications or intolerance; as dual oral therapy in combination with: metformin, in adult patients (particularly overweight patients) with insufficient glycaemic control despite maximal tolerated dose of monotherapy with metformin; a sulphonylurea, only in adult patients who show intolerance to metformin or for whom metformin is contraindicated, with insufficient glycaemic control despite maximal tolerated dose of monotherapy with a sulphonylurea; as triple oral therapy in combination with: metformin and a sulphonylurea, in adult patients (particularly overweight patients) with insufficient glycaemic control despite dual oral therapy. Pioglitazone is also indicated for combination with insulin in type-2 diabetes mellitus adult patients with insufficient glycaemic control on insulin for whom metformin is inappropriate because of contraindications or intolerance. After initiation of therapy with pioglitazone, patients should be reviewed after 3 to 6 months to assess adequacy of response to treatment (e. g. reduction in HbA1c). In patients who fail to show an adequate response, pioglitazone should be discontinued. In light of potential risks with prolonged therapy, prescribers should confirm at subsequent routine reviews that the benefit of pioglitazone is maintained.

Pioglitazone is indicated as second or third line treatment of type-2 diabetes mellitus as described below: as monotherapy: in adult patients (particularly overweight patients) inadequately controlled by diet and exercise for whom metformin is inappropriate because of contraindications or intolerance. as dual oral therapy in combination with: metformin, in adult patients (particularly overweight patients) with insufficient glycaemic control despite maximal tolerated dose of monotherapy with metformin; a sulphonylurea, only in adult patients who show intolerance to metformin or for whom metformin is contraindicated, with insufficient glycaemic control despite maximal tolerated dose of monotherapy with a sulphonylurea; as triple oral therapy in combination with: metformin and a sulphonylurea, in adult patients (particularly overweight patients) with insufficient glycaemic control despite dual oral therapy. Pioglitazone is also indicated for combination with insulin in type-2 diabetes mellitus adult patients with insufficient glycaemic control on insulin for whom metformin is inappropriate because of contraindications or intolerance. After initiation of therapy with pioglitazone, patients should be reviewed after three to six months to assess adequacy of response to treatment (e. g. reduction in HbA1c). In patients who fail to show an adequate response, pioglitazone should be discontinued. In light of potential risks with prolonged therapy, prescribers should confirm at subsequent routine reviews that the benefit of pioglitazone is maintained.

Pioglitazone is indicated in the treatment of type-2 diabetes mellitus as monotherapy: , , , in adult patients (particularly overweight patients) inadequately controlled by diet and exercise for whom metformin is inappropriate because of contraindications or intolerance. , , , Pioglitazone is also indicated for combination with insulin in type 2 diabetes mellitus adult patients with insufficient glycaemic control on insulin for whom metformin is inappropriate because of contraindications or intolerance. , , After initiation of therapy with pioglitazone, patients should be reviewed after 3 to 6 months to assess adequacy of response to treatment (e. g. reduction in HbA1c). In patients who fail to show an adequate response, pioglitazone should be discontinued. In light of potential risks with prolonged therapy, prescribers should confirm at subsequent routine reviews that the benefit of pioglitazone is maintained. ,

Pioglitazone is indicated in the treatment of type-2 diabetes mellitus: as monotherapyin adult patients (particularly overweight patients) inadequately controlled by diet and exercise for whom metformin is inappropriate because of contraindications or intolerance. After initiation of therapy with pioglitazone, patients should be reviewed after 3 to 6 months to assess adequacy of response to treatment (e. g. reduction in HbA1c). In patients who fail to show an adequate response, pioglitazone should be discontinued. In light of potential risks with prolonged therapy, prescribers should confirm at subsequent routine reviews that the benefit of pioglitazone is maintained.

Pioglitazone is indicated as second or third line treatment of type 2 diabetes mellitus as described below: as monotherapyin adult patients (particularly overweight patients) inadequately controlled by diet and exercise for whom metformin is inappropriate because of contraindications or intolerance; as dual oral therapy in combination withmetformin, in adult patients (particularly overweight patients) with insufficient glycaemic control despite maximal tolerated dose of monotherapy with metformin; a sulphonylurea, only in adult patients who show intolerance to metformin or for whom metformin is contraindicated, with insufficient glycaemic control despite maximal tolerated dose of monotherapy with a sulphonylurea; as triple oral therapy in combination withmetformin and a sulphonylurea, in adult patients (particularly overweight patients) with insufficient glycaemic control despite dual oral therapy. Pioglitazone is also indicated for combination with insulin in type 2 diabetes mellitus in adult patients with insufficient glycaemic control on insulin for whom metformin is inappropriate because of contraindications or intolerance. After initiation of therapy with pioglitazone, patients should be reviewed after 3 to 6 months to assess adequacy of response to treatment (e. g. reduction in HbA1c). In patients who fail to show an adequate response, pioglitazone should be discontinued. In light of potential risks with prolonged therapy, prescribers should confirm at subsequent routine reviews that the benefit of pioglitazone is maintained.

Pioglitazone is indicated as second or third line treatment of type 2 diabetes mellitus as described below: as monotherapy- in adult patients (particularly overweight patients) inadequately controlled by diet and exercise for whom metformin is inappropriate because of contraindications or intolerance; as dual oral therapy in combination with- a sulphonylurea, only in adult patients who show intolerance to metformin or for whom metformin is contraindicated, with insufficient glycaemic control despite maximal tolerated dose of monotherapy with a sulphonylurea; Pioglitazone is also indicated for combination with insulin in type 2 diabetes mellitus in adult patients with insufficient glycaemic control on insulin for whom metformin is inappropriate because of contraindications or intolerance. After initiation of therapy with pioglitazone, patients should be reviewed after 3 to 6 months to assess adequacy of response to treatment (e. g. reduction in HbA1c). In patients who fail to show an adequate response, pioglitazone should be discontinued. In light of potential risks with prolonged therapy, prescribers should confirm at subsequent routine reviews that the benefit of pioglitazone is maintained.

Pioglitazone is indicated as second- or third-line treatment of type-2 diabetes mellitus as described below: as monotherapy: in adult patients (particularly overweight patients) inadequately controlled by diet and exercise for whom metformin is inappropriate because of contraindications or intolerance; as dual oral therapy in combination with: metformin, in adult patients (particularly overweight patients) with insufficient glycaemic control despite maximal tolerated dose of monotherapy with metformin; a sulphonylurea, only in adult patients who show intolerance to metformin or for whom metformin is contraindicated, with insufficient glycaemic control despite maximal tolerated dose of monotherapy with a sulphonylurea; as triple oral therapy in combination with: metformin and a sulphonylurea, in adult patients (particularly overweight patients) with insufficient glycaemic control despite dual oral therapy. Pioglitazone is also indicated for combination with insulin in type-2-diabetes-mellitus adult patients with insufficient glycaemic control on insulin for whom metformin is inappropriate because of contraindications or intolerance (see section 4. 4). After initiation of therapy with pioglitazone, patients should be reviewed after three to six months to assess adequacy of response to treatment (e. g. reduction in HbA1c). In patients who fail to show an adequate response, pioglitazone should be discontinued. In light of potential risks with prolonged therapy, prescribers should confirm at subsequent routine reviews that the benefit of pioglitazone is maintained


Therapeutic Uses
Hypoglycemic Agents
/CLINICAL TRIALS/ ClinicalTrials.gov is a registry and results database of publicly and privately supported clinical studies of human participants conducted around the world. The Web site is maintained by the National Library of Medicine (NLM) and the National Institutes of Health (NIH). Each ClinicalTrials.gov record presents summary information about a study protocol and includes the following: Disease or condition; Intervention (for example, the medical product, behavior, or procedure being studied); Title, description, and design of the study; Requirements for participation (eligibility criteria); Locations where the study is being conducted; Contact information for the study locations; and Links to relevant information on other health Web sites, such as NLM's MedlinePlus for patient health information and PubMed for citations and abstracts for scholarly articles in the field of medicine. Pioglitazone is included in the database.

Pioglitazone is used alone (monotherapy) or in combination with a sulfonylurea antidiabetic agent, metformin (either as a fixed-combination preparation or as individual drugs given concurrently), or insulin as an adjunct to diet and exercise for the management of type 2 diabetes mellitus. Pioglitazone is used also in fixed combination with glimepiride in patients with type 2 diabetes mellitus who are already receiving pioglitazone and a sulfonylurea separately or who are inadequately controlled on a sulfonylurea or pioglitazone alone. In patients whose hyperglycemia cannot be controlled with these other antidiabetic agents, pioglitazone should be added to, not substituted for, such antidiabetic therapy. /Included in US product labeling/

/EXPL THER/ Peroxisome proliferator activated receptor gamma-activating drugs show various salutary effects in preclinical models of neurodegenerative disease. The decade-long clinical usage of these drugs as antidiabetics now allows for evaluation of patient-oriented data sources. Using observational data from 2004-2010, we analyzed the association of pioglitazone and incidence of dementia in a prospective cohort study of 145,928 subjects aged >/= 60 years who, at baseline, were free of dementia and insulin-dependent diabetes mellitus. We distinguished between nondiabetics, diabetics without pioglitazone, diabetics with prescriptions of <8 calendar quarters of pioglitazone, and diabetics with =8 quarters. Cox proportional hazard models explored the relative risk (RR) of dementia incidence dependent on pioglitazone use adjusted for sex, age, use of rosiglitazone or metformin, and cardiovascular comorbidities. Long-term use of pioglitazone was associated with a lower dementia incidence. Relative to nondiabetics, the cumulative long-term use of pioglitazone reduced the dementia risk by 47% (RR=0.53, p=0.029). If diabetes patients used pioglitazone <8 quarters, the dementia risk was comparable to those of nondiabetics (RR=1.16, p=0.317), and diabetes patients without a pioglitazone treatment had a 23% increase in dementia risk (RR=1.23, p<0.001). We did not find evidence for age effects, nor for selection into pioglitazone treatment due to obesity. These findings indicate that pioglitazone treatment is associated with a reduced dementia risk in initially non-insulin-dependent diabetes mellitus patients. Prospective clinical trials are needed to evaluate a possible neuroprotective effect in these patients in an ageing population.
Drug Warnings
/BOXED WARNING/ WARNING: CONGESTIVE HEART FAILURE. Thiazolidinediones, including pioglitazone hydrochloride, cause or exacerbate congestive heart failure in some patients. After initiation of pioglitazone tablets, and after dose increases, monitor patients carefully for signs and symptoms of heart failure (e.g., excessive, rapid weight gain, dyspnea, and/or edema). If heart failure develops, it should be managed according to current standards of care and discontinuation or dose reduction of pioglitazone hydrochloride must be considered. Pioglitazone tablets are not recommended in patients with symptomatic heart failure. Initiation of pioglitazone hydrochloride in patients with established NYHA Class III or IV heart failure is contraindicated.

Thiazolidinediones, including pioglitazone, alone or in combination with other antidiabetic agents, can cause fluid retention, which may lead to or exacerbate congestive heart failure (CHF). Use of thiazolidinediones is associated with an approximately twofold increased risk of CHF. Use of pioglitazone in combination with insulin or in patients with New York Heart Association (NYHA) class I or II heart failure may increase the risk. Patients should be observed for signs and symptoms of CHF (e.g., dyspnea, rapid weight gain, edema, unexplained cough or fatigue), especially during initiation of therapy and dosage titration. If signs and symptoms of CHF develop, the disorder should be managed according to current standards of care. In addition, a decrease in the dosage or discontinuance of pioglitazone must be considered in such patients.

Patients with New York Heart Association (NYHA) class III or IV cardiac status with or without congestive heart failure (CHF) or with an acute coronary event were not studied in clinical trials of pioglitazone; initiation of therapy with the drug is contraindicated in patients with NYHA class III or IV heart failure. Use of pioglitazone is not recommended in patients with symptomatic heart failure. Caution should be exercised in patients with edema and in those who are at risk for CHF. Thiazolidinedione therapy should not be initiated in hospitalized patients with diabetes mellitus because of the delayed onset of action and because possible drug-related increases in vascular volume and CHF may complicate care of patients with hemodynamic changes induced by coexisting conditions or in-hospital interventions.

Risk for pregnancy unless contraceptive measures initiated; anovulatory premenopausal women with insulin resistance may resume ovulation during therapy. The frequency of resumption of ovulation with pioglitazone therapy has not been evaluated in clinical studies, and, therefore, is unknown. If menstrual dysfunction occurs, weigh risks versus benefits of continued pioglitazone.
Pharmacodynamics
Pioglitazone enhances cellular responsiveness to insulin, increases insulin-dependent glucose disposal, and improves impaired glucose homeostasis. In patients with type 2 diabetes mellitus, these effects result in lower plasma glucose concentrations, lower plasma insulin concentrations, and lower HbA1c values. Significant fluid retention leading to the development/exacerbation of congestive heart failure has been reported with pioglitazone - avoid its use in patients in heart failure or at risk of developing heart failure. There is some evidence that pioglitazone may be associated with an increased risk of developing bladder cancer. Pioglitazone should not be used in patients with active bladder cancer and should be used with caution in patients with a history of bladder cancer.
Mechanism of Action
Pioglitazone is a selective agonist at peroxisome proliferator-activated receptor-gamma (PPARγ) in target tissues for insulin action such as adipose tissue, skeletal muscle, and liver. Activation of PPARγ increases the transcription of insulin-responsive genes involved in the control of glucose and lipid production, transport, and utilization. Through this mechanism, pioglitazone both enhances tissue sensitivity to insulin and reduces the hepatic production of glucose (i.e. gluconeogenesis) - insulin resistance associated with type 2 diabetes mellitus is therefore improved without an increase in insulin secretion by pancreatic beta cells. DrugBank Repeated administration of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists reduces neuropathic pain-like behavior and associated changes in glial activation in the spinal cord dorsal horn. As PPARgamma is a nuclear receptor, sustained changes in gene expression are widely believed to be the mechanism of pain reduction. However, we recently reported that a single intrathecal (i.t.) injection of pioglitazone, a PPARgamma agonist, reduced hyperalgesia within 30 minutes, a time frame that is typically less than that required for genomic mechanisms. To determine the very rapid antihyperalgesic actions of PPARgamma activation, we administered pioglitazone to rats with spared nerve injury and evaluated hyperalgesia. Pioglitazone inhibited hyperalgesia within 5 minutes of injection, consistent with a nongenomic mechanism. Systemic or i.t. administration of GW9662, a PPARgamma antagonist, inhibited the antihyperalgesic actions of intraperitoneal or i.t. pioglitazone, suggesting a spinal PPAR?-dependent mechanism. To further address the contribution of nongenomic mechanisms, we blocked new protein synthesis in the spinal cord with anisomycin. When coadministered intrathecally, anisomycin did not change pioglitazone antihyperalgesia at an early 7.5-minute time point, further supporting a rapid nongenomic mechanism. At later time points, anisomycin reduced pioglitazone antihyperalgesia, suggesting delayed recruitment of genomic mechanisms. Pioglitazone reduction of spared nerve injury-induced increases in GFAP expression occurred more rapidly than expected, within 60 minutes. We are the first to show that activation of spinal PPARgamma rapidly reduces neuropathic pain independent of canonical genomic activity. We conclude that acute pioglitazone inhibits neuropathic pain in part by reducing astrocyte activation and through both genomic and nongenomic PPARgamma mechanisms. PMID:25599238 Full text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329091

Pioglitazone hydrochloride is a thiazolidinedione that depends on the presence of insulin for its mechanism of action. Pioglitazone hydrochloride decreases insulin resistance in the periphery and in the liver resulting in increased insulin-dependent glucose disposal and decreased hepatic glucose output. Pioglitazone is not an insulin secretagogue. Pioglitazone is an agonist for peroxisome proliferator-activated receptor-gamma (PPARgamma). PPAR receptors are found in tissues important for insulin action such as adipose tissue, skeletal muscle, and liver. Activation of PPARgamma nuclear receptors modulates the transcription of a number of insulin responsive genes involved in the control of glucose and lipid metabolism.

... Thiazolidinediones reduce insulin resistance not only in type 2 diabetes but also in non-diabetic conditions associated with insulin resistance such as obesity. The mechanism of action involves binding to the peroxisome proliferator-activated receptor (PPAR)gamma, a transcription factor that regulates the expression of specific genes especially in fat cells but also in other tissues. It is likely that thiazolidinediones primarily act in adipose tissue where PPARgamma is predominantly expressed. Thiazolidinediones have been shown to interfere with expression and release of mediators of insulin resistance originating in adipose tissue (e.g. free fatty acids, adipocytokines such as tumor necrosis factor alpha, resistin, adiponectin) in a way that results in net improvement of insulin sensitivity (i.e. in muscle and liver). Nevertheless, a direct molecular effect in skeletal muscle cannot be excluded. ... PMID:12173692

Pioglitazone, a full peroxisome proliferator-activated receptor (PPAR)-gamma agonist, improves insulin sensitivity by increasing circulating adiponectin levels. However, the molecular mechanisms by which pioglitazone induces insulin sensitization are not fully understood. In this study, we investigated whether pioglitazone improves insulin resistance via upregulation of either 2 distinct receptors for adiponectin (AdipoR1 or AdipoR2) expression in 3T3-L1 adipocytes. Glucose uptake was evaluated by 2-[(3)H] deoxy-glucose uptake assay in 3T3-L1 adipocytes with pioglitazone treatment. AdipoR1 and AdipoR2 mRNA expressions were analyzed by qRT-PCR. /The investigators/ first confirmed that pioglitazone significantly increased insulin-induced 2-deoxyglucose (2-DOG) uptake in 3T3-L1 adipocytes. Next, we investigated the mRNA expression and regulation of AdipoR1 and AdipoR2 after treatment with pioglitazone. Interestingly, pioglitazone significantly induced AdipoR2 expression but it did not affect AdipoR1 expression. In addition, adenovirus-mediated PPARgamma expression significantly enhanced the effects of pioglitazone on insulin-stimulated 2-DOG uptake and AdipoR2 expression in 3T3-L1 adipocytes. These data suggest that pioglitazone enhances adiponectin's autocrine and paracrine actions in 3T3-L1 adipocytes via upregulation of PPARgamma-mediated AdipoR2 expression. Furthermore, we found that pioglitazone significantly increased AMP-activated protein kinase (AMPK) phosphorylation in insulin-stimulated 3T3-L1 adipocytes, but it did not lead to the phosphorylation of IRS-1, Akt, or protein kinase ... Pioglitazone increases insulin sensitivity, at least partly, by PPARgamma-AdipoR2-mediated AMPK phosphorylation in 3T3-L1 adipocytes. In conclusion, the upregulation of AdipoR2 expression may be one of the mechanisms by which pioglitazone improves insulin resistance in 3T3-L1 adipocytes.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H21KN2O3S
Molecular Weight
396.544944524765
Exact Mass
394.075
CAS #
1266523-09-4
Related CAS #
Pioglitazone;111025-46-8
PubChem CID
56653040
Appearance
Typically exists as solid at room temperature
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
7
Heavy Atom Count
26
Complexity
472
Defined Atom Stereocenter Count
0
SMILES
C(C1C=CC(OCCC2N=CC(CC)=CC=2)=CC=1)C1SC(=O)NC1=O.[KH]
InChi Key
YRUUYXLNBAJFIM-UHFFFAOYSA-M
InChi Code
InChI=1S/C19H20N2O3S.K/c1-2-13-3-6-15(20-12-13)9-10-24-16-7-4-14(5-8-16)11-17-18(22)21-19(23)25-17;/h3-8,12,17H,2,9-11H2,1H3,(H,21,22,23);/q;+1/p-1
Chemical Name
potassium;5-[[4-[2-(5-ethylpyridin-2-yl)ethoxy]phenyl]methyl]-1,3-thiazolidin-3-ide-2,4-dione
Synonyms
Pioglitazone (potassium salt); 1266523-09-4; Pioglitazone potassium; X1ZX7RX9WU; Pioglitazone (potassium); UNII-X1ZX7RX9WU; potassium;5-[[4-[2-(5-ethylpyridin-2-yl)ethoxy]phenyl]methyl]-1,3-thiazolidin-3-ide-2,4-dione; 2,4-Thiazolidinedione, 5-((4-(2-(5-ethyl-2-pyridinyl)ethoxy)phenyl)methyl)-, potassium salt (1:1);
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.5218 mL 12.6088 mL 25.2175 mL
5 mM 0.5044 mL 2.5218 mL 5.0435 mL
10 mM 0.2522 mL 1.2609 mL 2.5218 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT04501406 Recruiting Drug: Pioglitazone
Other: Placebo
Type 2 Diabetes Mellitus (T2DM)
Nonalcoholic Steatohepatitis
University of Florida December 15, 2020 Phase 2
NCT01873001 Completed Drug: Pioglitazone HCl
Drug: Abiraterone acetate
Healthy Volunteers Janssen Research & Development, LLC May 2013 Phase 1
NCT02958956 Completed Has Results Drug: Pioglitazone Diabetes Mellitus, Type 2, Cancer Takeda January 1, 1997
NCT03080480 Terminated Drug: Pioglitazone Chronic Granulomatous Disease Children's Hospital of Fudan University September 1, 2017 Phase 1
Phase 2
Contact Us