yingweiwo

Pirlindole free base

Cat No.:V11721 Purity: ≥98%
Pirlindole is a reversible and selective MAO-A inhibitor.
Pirlindole free base
Pirlindole free base Chemical Structure CAS No.: 60762-57-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
Other Sizes

Other Forms of Pirlindole free base:

  • Pirlindole mesylate
  • Pirlindole-d4
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Pirlindole is a reversible and selective MAO-A inhibitor. Pirlindole is also an inhibitor (blocker/antagonist) of enterovirus D68 and coxsackievirus B3 (CV-B3).
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Well absorbed with a bioavailability of 90%.
Mainly renal, with 0.4-0.5% being excreted in the urine as unchanged drug in healthy males. Renal excretion was the main route of elimination of the metabolites in man.
High plasma clearance (450–1000 1/h) in one study.
Metabolism / Metabolites
The drug is metabolized significantly through the hepatic system. From studies in dogs and rats, pirlindole has a bioavailability of between 20 and 30% due to the hepatic first-pass effect on this medication. The rat eliminates mainly unconjugated drug while the dog eliminates mostly conjugated drug.
Biological Half-Life
0.7±0.3 in one study of healthy volunteers
Toxicity/Toxicokinetics
Protein Binding
97% binding to plasma proteins
References

[1]. Pirlindole: a selective reversible inhibitor of monoamine oxidase A. A review of its preclinical properties. Pharmacol Res. 1997 Jul;36(1):23-33.

[2]. Screening of a Library of FDA-Approved Drugs Identifies Several Enterovirus Replication Inhibitors That Target Viral Protein 2C. Antimicrob Agents Chemother. 2016 Apr 22;60(5):2627-38.

Additional Infomation
LSM-1636 is a member of carbazoles.
This drug is classified as a reversible inhibitor of monoamine oxidase A enzyme (also known as a RIMA drug). It was developed and is currently used as an antidepressant in Russia. Its chemical structure is similar to metralindole, and it also shares pharmacological properties with this drug. Pirlindole is a selective, reversible inhibitor of monoamine oxidase (MAO) subtype A (MAO-A) that is approved in several European and non-European countries for the treatment of major depression. The antidepressant efficacy and safety of pirlindole have been demonstrated in numerous studies and, supported by many years of clinical experience in the treatment of depression. Pirlindole's efficacy and safety have also been shown in the treatment of fibromyalgia.
Drug Indication
For the treatment of major depression. It is being studied in the treatment of fibromyalgia pain syndrome. One study determined that the effect of pirlindole on sensorimotor performance while driving a motor vehicle shows many similarities to that of placebo. The drug appears to stimulate the central nervous system, rather than exhibit a sedative effect, like many antidepressants. Because of its selective, reversible inhibition of monoamine oxidase (MAO-A) and short half-life, unpleasant "cheese effects" are avoided. This refers to the effects of consuming tyramine-rich foods, such as cheese while medicated with monoamine oxidase inhibitors, leading to severe headaches and hypertension. of The available evidence supports pirlindole as a safe and effective treatment option for the management of depression and fibromyalgia syndrome.
Mechanism of Action
This drug is a selective and reversible inhibitor of monoamine oxidase A (also known as MAO-A). Its main mechanism of action is selective and reversible inhibition of monoamine oxidase A. Its secondary mechanism of action is the inhibition effect of noradrenaline and 5-hydroxytryptamine reuptake.
Pharmacodynamics
Pirlindole regulates that metabolism of norepinephrine and catecholamines, leading to relief of depressive symptoms. The prevention of breakdown of these neuromodulators is thought to elevate mood.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H18N2.CH4O3S
Molecular Weight
322.42248
Exact Mass
322.135
CAS #
60762-57-4
Related CAS #
Pirlindole mesylate;207572-66-5;Pirlindole-d4;1801646-26-3
PubChem CID
68802
Appearance
Off-white to light yellow solid powder
Density
1.29 g/cm3
Boiling Point
422.6ºC at 760 mmHg
Flash Point
209.4ºC
LogP
3.843
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
1
Rotatable Bond Count
0
Heavy Atom Count
17
Complexity
303
Defined Atom Stereocenter Count
0
InChi Key
IWVRVEIKCBFZNF-UHFFFAOYSA-N
InChi Code
InChI=1S/C15H18N2/c1-10-5-6-14-12(9-10)11-3-2-4-13-15(11)17(14)8-7-16-13/h5-6,9,13,16H,2-4,7-8H2,1H3
Chemical Name
12-methyl-1,4-diazatetracyclo[7.6.1.05,16.010,15]hexadeca-9(16),10(15),11,13-tetraene
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.1015 mL 15.5077 mL 31.0154 mL
5 mM 0.6203 mL 3.1015 mL 6.2031 mL
10 mM 0.3102 mL 1.5508 mL 3.1015 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us