yingweiwo

Plinabulin (NPI-2358)

Alias: NPI-2358; Plinabulin; NPI2358; Plinabulin(NPI-2358); NPI 2358; NPI-2358 (Plinabulin); (3z,6z)-3-Benzylidene-6-[(5-Tert-Butyl-1h-Imidazol-4-Yl)methylidene]piperazine-2,5-Dione; 986FY7F8XR; NPI 2358;
Cat No.:V0683 Purity: ≥98%
Plinabulin (formerly also known as NPI-2358) is a novel and potent vascular disrupting agent (VDA) against tubulin-depolymerizing with IC50 of 9.8~18 nM in tumor cells.
Plinabulin (NPI-2358)
Plinabulin (NPI-2358) Chemical Structure CAS No.: 714272-27-2
Product category: VDA
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Purity: ≥98%

Product Description

Plinabulin (formerly also known as NPI-2358) is a novel and potent vascular disrupting agent (VDA) against tubulin-depolymerizing with IC50 of 9.8~18 nM in tumor cells. It demonstrate significant in vivo antitumor efficacy in human plasmacytoma mouse xenograft models. Plinabulin is a first-in-class and selective immunomodulating microtubule-binding agent (SIMBA), which binds in the vicinity of the colchicine binding domain of tubulin.

Biological Activity I Assay Protocols (From Reference)
Targets
β-tubulin; microtubule
ln Vitro
PlinabuLin (NPI-2358), a potent antineoplastic agent, rapidly induces tubulin depolymerization and monolayer permeability in multidrug-resistant (MDR) tumor cell lines. In HUVEC, the IC50 values are 18 nM for DU 145 cells, 13 nM for PC-3 cells, 14 nM for MDA-MB-231 cells, 18 nM for NCI-H292 cells, and 11 for Jurkat leukemia cells. nM[1].
ln Vivo
Tumor perfusion is reduced in a dose- and time-dependent manner in female CDF1 and C3H/He mice when given plinabuLin (0 mg/kg–15 mg/kg; intraperitoneally). Plinabulin's anticancer effects are more responsive to KHT sarcomas than they are to C3H tumors, and both models exhibit an increased radiation response [3].
Thirty-eight patients were enrolled. A dose of 30 mg/m² was selected as the RP2D based on the adverse events of nausea, vomiting, fatigue, fever, tumor pain, and transient blood pressure elevations, with DCE-MRI indicating decreases in tumor blood flow (Ktrans) from 13.5 mg/m² (defining a biologically effective dose) with a 16% to 82% decrease in patients evaluated at 30 mg/m². Half-life was 6.06 ± 3.03 hours, clearance was 30.50 ± 22.88 L/h, and distributive volume was 211 ± 67.9 L. Conclusions: At the RP2D of 30 mg/m², plinabulin showed a favorable safety profile, while eliciting biological effects as evidenced by decreases in tumor blood flow, tumor pain, and other mechanistically relevant adverse events. On the basis of these results additional clinical trials were initiated with plinabulin in combination with standard chemotherapy agents.[2]
Plinabulin (7.5 mg/kg) significantly reduced the initial area under curve (IAUC) and the transfer constant (K(trans)) within 1 hour after injection, reaching a nadir at 3 h, but returning to normal within 24 h. A dose-dependent decrease in IAUC and K(trans), was seen at 3 h. No significant anti-tumour effects were observed in the C3H tumours until doses of 12.5 mg/kg were achieved, but started at 1.5 mg/kg in the KHT sarcoma. Irradiating tumours 1 h after injecting plinabulin enhanced response in both models. Conclusions: Plinabulin induced a time- and dose-dependent decrease in tumour perfusion. The KHT sarcoma was more sensitive than the C3H tumour to the anti-tumour effects of plinabulin, while radiation response was enhanced in both models.[3]
Enzyme Assay
The diketopiperazine NPI-2358 is a synthetic analog of NPI-2350, a natural product isolated from Aspergillus sp., which depolymerizes microtubules in A549 human lung carcinoma cells. Although structurally different from the colchicine-binding site agents reported to date, NPI-2358 binds to the colchicine-binding site of tubulin. NPI-2358 has potent in-vitro anti-tumor activity against various human tumor cell lines and maintains activity against tumor cell lines with various multidrug-resistant (MDR) profiles. In addition, when evaluated in proliferating human umbilical vein endothelial cells (HUVECs), concentrations as low as 10 nmol/l NPI-2358 induced tubulin depolymerization within 30 min. Furthermore, NPI-2358 dose dependently increases HUVEC monolayer permeability--an in-vitro model of tumor vascular collapse. NPI-2358 was compared with three tubulin-depolymerizing agents with vascular-disrupting activity: colchicine, vincristine and combretastatin A-4 (CA4). Results showed that the activity of NPI-2358 in HUVECs was more potent than either colchicine or vincristine; the profile of CA4 approached that of NPI-2358. Altogether, our data show that NPI-2358 is a potent anti-tumor agent which is active in MDR tumor cell lines, and is able to rapidly induce tubulin depolymerization and monolayer permeability in HUVECs. These data warrant further evaluation of NPI-2358 as a vascular-disrupting agent in vivo. Currently, NPI-2358 is in preclinical development for the treatment of cancer. [1]
Cell Assay
Cell Viability Assay[1]
Cell Types: HUVECs cells
Tested Concentrations: 2 nM, 10 nM, 20 nM and 200 nM
Incubation Duration: 30 minutes
Experimental Results: Low concentrations (2 nM, 10 nM) rapidly induced tubulin depolymerization in HUVECs.
Animal Protocol
Animal/Disease Models: Female CDF1 mice (10-14weeks old) with C3H mammary carcinoma; Female C3H/HeJ mice with KHT sarcoma cells (8-weeks-old)[3]
Doses: 0 mg/kg, 1.5 mg/kg , 2.5 mg/kg, 5 mg/kg, 7.5 mg/kg, 10 mg/kg, 12.5 mg/kg, 15 mg/kg; 0.02 mL/g mouse body weight in CDF1 mice and 0.01 mL/g body weight for C3H /HeJ mice
Route of Administration: intraperitoneal (ip)injection; 0 huor, 1 huor, 3 hrs (hours), 6 huors, 24 huors
Experimental Results: Induced a time- and dose-dependent decrease in tumour perfusion. The KHT sarcoma was more sensitive than the C3H tumour to the anti -tumor, while radiation response was enhanced in both models.
Patients received a weekly infusion of plinabulin for 3 of every 4 weeks. A dynamic accelerated dose titration method was used to escalate the dose from 2 mg/m² to the RP2D, followed by enrollment of an RP2D cohort. Safety, pharmacokinetic, and cardiovascular assessments were conducted, and Dynamic contrast-enhanced MRI (DCE-MRI) scans were performed to estimate changes in tumor blood flow.[2]
Foot implanted C3H mammary carcinomas or leg implanted KHT sarcomas were used, with plinabulin injected intraperitoneally. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measurements were made with gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) on a 7-tesla magnet. Treatment response was assessed using regrowth delay (C3H tumours), clonogenic survival (KHT sarcomas) or histological estimates of necrosis for both models.[3]
References

[1]. NPI-2358 is a tubulin-depolymerizing agent: in-vitro evidence for activity as a tumor vascular-disrupting agent. Anticancer Drugs. 2006 Jan;17(1):25-31.

[2]. Phase 1 First-in-Human Trial of the Vascular Disrupting Agent Plinabulin (NPI-2358) in Patients with Solid Tumors or Lymphomas Clin Cancer Res. 2010 Dec 1;16(23):5892-9.

[3]. Vascular effects of plinabulin (NPI-2358) and the influence on tumour response when given alone or combined with radiation. Int J Radiat Biol. 2011 Nov;87(11):1126-34.

Additional Infomation
Plinabulin is a member of the class of 2,5-diketopiperazines that is piperazine-2,5-dione substituted by benzylidene and (5-tert-butyl-1H-imidazol-4-yl)methylidene groups at positions 3 and 6, respectively. It is a vascular disrupting agent and a microtubule destabalising agent which was in clinical trials (now discontinued) for the treatment of non-small cell lung cancer. It has a role as a microtubule-destabilising agent, an antineoplastic agent, an apoptosis inducer and an angiogenesis inhibitor. It is a member of 2,5-diketopiperazines, a member of imidazoles, a member of benzenes and an olefinic compound.
Plinabulin is an orally active diketopiperazine derivative with potential antineoplastic activity. Plinabulin selectively targets and binds to the colchicine-binding site of tubulin, thereby interrupting equilibrium of microtubule dynamics. This disrupts mitotic spindle assembly leading to cell cycle arrest at M phase and blockage of cell division. In addition, plinabulin may also inhibit growth of proliferating vascular endothelial cells, thereby disrupting the function of tumor vasculature that further contributes to a decrease in tumor cell proliferation.
Drug Indication
Investigated for use/treatment in cancer/tumors (unspecified).
Mechanism of Action
NPI-2358 is a vascular disrupting agent currently in clinical development for the treatment of cancer by Nereus. NPI-2358 is one of over 200 synthetic analogues that were prepared following the discovery of the compound Halimide isolated from a marine fungus. In preclinical models of cancer, including lung, breast, sarcoma, colon and prostate, NPI-2358 demonstrated potent and selective anti-tumor effects in combination with docetaxel and other oncology therapies, as well as single-agent efficacy in a number of orthotopic models. NPI-2358 interacts with soluble beta-tubulin and prevents the polymerization of tubulin without altering dynamic microtubule function of formed microtubules. As demonstrated in preclinical testing, this target profile results in a highly specific nanomolar cytotoxicity while reducing the side effects seen in first-generation VDAs due to cardiotoxicity, hemodynamic changes and neuropathies.
Plinabulin (NPI-2358) is a vascular disrupting agent that elicits tumor vascular endothelial architectural destabilization leading to selective collapse of established tumor vasculature. Preclinical data indicated plinabulin has favorable safety and antitumor activity profiles, leading to initiation of this clinical trial to determine the recommended phase 2 dose (RP2D) and assess the safety, pharmacokinetics, and biologic activity of plinabulin in patients with advanced malignancies. [2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H20N4O2
Molecular Weight
336.39
Exact Mass
336.158
Elemental Analysis
C, 67.84; H, 5.99; N, 16.66; O, 9.51
CAS #
714272-27-2
Related CAS #
714272-27-2
PubChem CID
9949641
Appearance
Light yellow to yellow solid powder
Density
1.3±0.1 g/cm3
Boiling Point
730.3±60.0 °C at 760 mmHg
Flash Point
395.5±32.9 °C
Vapour Pressure
0.0±2.4 mmHg at 25°C
Index of Refraction
1.657
LogP
2.66
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
3
Heavy Atom Count
25
Complexity
597
Defined Atom Stereocenter Count
0
SMILES
CC(C)(C)C1=C(N=CN1)/C=C\2/C(=O)N/C(=C\C3=CC=CC=C3)/C(=O)N2
InChi Key
UNRCMCRRFYFGFX-TYPNBTCFSA-N
InChi Code
InChI=1S/C19H20N4O2/c1-19(2,3)16-13(20-11-21-16)10-15-18(25)22-14(17(24)23-15)9-12-7-5-4-6-8-12/h4-11H,1-3H3,(H,20,21)(H,22,25)(H,23,24)/b14-9-,15-10-
Chemical Name
(3E,6E)-3-benzylidene-6-((5-(tert-butyl)-1H-imidazol-4-yl)methylene)piperazine-2,5-dione
Synonyms
NPI-2358; Plinabulin; NPI2358; Plinabulin(NPI-2358); NPI 2358; NPI-2358 (Plinabulin); (3z,6z)-3-Benzylidene-6-[(5-Tert-Butyl-1h-Imidazol-4-Yl)methylidene]piperazine-2,5-Dione; 986FY7F8XR; NPI 2358;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 54 mg/mL (160.5 mM)
Water:<1 mg/mL
Ethanol:<1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (7.43 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.5 mg/mL (7.43 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (7.43 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.9727 mL 14.8637 mL 29.7274 mL
5 mM 0.5945 mL 2.9727 mL 5.9455 mL
10 mM 0.2973 mL 1.4864 mL 2.9727 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT05599789 Recruiting Drug: Pembrolizumab in Combination
with Plinabulin and Docetaxel
Non Small Cell Lung
Cancer Metastatic
Peking Union Medical College Hospital February 1, 2023 Phase 2
NCT05130827 Active, not recruiting Drug: Plinabulin Multiple Myeloma Memorial Sloan Kettering
Cancer Center
December 21, 2021 Phase 2
NCT02812667 Active, not recruiting Drug: Nivolumab + Plinabulin Non-small Cell Lung
Cancer Metastatic
Lyudmila Bazhenova, M.D. August 29, 2016 Phase 1
NCT03294577 Active, not recruiting Drug: Pegfilgrastim
Drug: Plinabulin
Chemotherapy-induced Neutropenia BeyondSpring Pharmaceuticals Inc. October 23, 2019 Phase 3
Biological Data
  • Plinabulin (NPI-2358)

    Antivascular activity of plinabulin.Blood.2011 May 26;117(21):5692-700.

  • Plinabulin (NPI-2358)

    Cell death induced by plinabulin depends on JNK as well as caspases.Blood.2011 May 26;117(21):5692-700.

  • Plinabulin (NPI-2358)

    Plinabulin inhibits growth and triggers apoptosis in MM.Blood.2011 May 26;117(21):5692-700.

Contact Us