Size | Price | Stock | Qty |
---|---|---|---|
1g |
|
||
Other Sizes |
|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Arthrobacter nicotianae KCC B35 isolated from blue-green mats densely covering oil sediments along the Arabian Gulf coast grew well on C10 to C40 n-alkanes as sole sources of carbon and energy. Growth on C20 to C40 alkanes was even better than on C10 to C18 alkanes. Biomass samples incubated for 6 hr with n-octacosane (C28) or n-nonacosane (C29) accumulated these compounds as the predominant constituent alkanes of the cell hydrocarbon fractions. The even chain hexadecane C16 and the odd chain pentadecane C15 were the second dominant constituent alkanes in C28 and C29 incubated cells, respectively. n-Hexadecane-incubated cells accumulated in their lipids higher proportions of C16-fatty acids than control cells not incubated with hydrocarbons. On the other hand, C28 and C29-incubated cells did not contain any fatty acids with the equivalent chain lengths, but the fatty acid patterns of the cell lipids suggest that there should have been mid-chain oxidation of these very long chain alkanes. This activity qualifies A. nicotianae KCC B35 to be used in cocktails for bioremediating environments polluted with heavy oil sediments. Liver, heart, kidneys, muscle and adipose (perirenal and s.c.) /bovine/ tissues were collected from 6 animals for analysis of their hydrocarbon composition. Qualitative and quantitative determinations were carried out by gas chromatography and combined gas chromatography-mass spectrometry. Although differing in the proportions, a homologous series of n-alkanes ranging from n-C12-n-C31 was found in all samples. The isoprenoid hydrocarbons phytane and phytene (phyt-1-ene and phyt-2-ene) were also identified. (These findings have relevance to the health of humans consuming hydrocarbon-contaminated meats.) /n-Alkanes/ Metabolism / Metabolites Arthrobacter nicotianae KCC B35 isolated from blue-green mats densely covering oil sediments along the Arabian Gulf coast grew well on C10 to C40 n-alkanes as sole sources of carbon and energy. Growth on C20 to C40 alkanes was even better than on C10 to C18 alkanes. Biomass samples incubated for 6 hr with n-octacosane (C28) or n-nonacosane (C29) accumulated these compounds as the predominant constituent alkanes of the cell hydrocarbon fractions. The even chain hexadecane C16 and the odd chain pentadecane C15 were the second dominant constituent alkanes in C28 and C29 incubated cells, respectively. n-Hexadecane-incubated cells accumulated in their lipids higher proportions of C16-fatty acids than control cells not incubated with hydrocarbons. On the other hand, C28 and C29-incubated cells did not contain any fatty acids with the equivalent chain lengths, but the fatty acid patterns of the cell lipids suggest that there should have been mid-chain oxidation of these very long chain alkanes. This activity qualifies A. nicotianae KCC B35 to be used in cocktails for bioremediating environments polluted with heavy oil sediments. |
---|---|
Toxicity/Toxicokinetics |
Toxicity Summary
IDENTIFICATION AND USE: Docosane is a solid n-alkane containing 22 carbon atoms (C22). Solid n-alkanes (paraffin waxes) are used in a variety of applications: as feeds for cracking them to gasoline blendstock materials, oxidation, and chlorination reactions. HUMAN EXPOSURE AND TOXICITY: There are no data available. ANIMAL STUDIES: A homologous series of n-alkanes ranging from n-C12-n-C31 was found in all samples of bovine tissues. Interactions The C-14 content of epidermis, dermis, subdermal muscle and certain other tissues was determined 48 hours following topical application of hexadecane-1-C-14 to the skin of guinea pigs. The effect of simultaneous application of U.S.P. heavy mineral oil, n-docosane, and heptane as well as hexadecane pre-treatment on the extent of penetration of hexadecane-1-C-14 was also measured. Large amounts of C-14 were found in the epidermis whereas relatively little accumulated in the dermis and underlying tissues. Each of the carrier vehicles reduced the amount of C-14 in the epidermis; whereas, docosane and mineral oil, but not heptane, reduced the amount of C-14 in the dermis and subdermal muscle. This correlated with the ability of heavy mineral oil and docosane, but not heptane, to decrease the dermatoxic effects of hexadecane. Pre-treatment of the skin with hexadecane 48 hours prior to application of hexadecane-1-C-14, if anything, increased the amount of the C-14 in the epidermis; however, pre-treatment with mineral oil:hexadecane reduced the amount of epidermal and dermal C-14 from a subsequent application of mineral oil:hexadecane-1-C-14. The results support the proposal that heavy mineral oil and alkanes with a chain length of over 20 carbon atoms reduce the dermatoxic effect of hexadecane by interfering with its penetration to the site of action. This site would appear to be either the deeper layers of epidermis or possibly the dermis. The increased uptake of hexadecane-C-14 by the epidermis following pretreatment with hexadecane provides a possible explanation for the more severe response seen with multiple hexadecane applications as opposed to a single application of the same amount of material. |
References |
|
Additional Infomation |
N-docosane is a solid. Insoluble in water. Used in organic synthesis, calibration, and temperature sensing equipment.
Docosane is a straight-chain alkane with 22 carbon atoms. It has a role as a plant metabolite. Docosane has been reported in Vanilla madagascariensis, Magnolia officinalis, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). |
Molecular Formula |
C22H46
|
---|---|
Molecular Weight |
310.60
|
Exact Mass |
310.36
|
CAS # |
629-97-0
|
Related CAS # |
Docosane-d46; 260411-88-9
|
PubChem CID |
12405
|
Appearance |
White to off-white solid
|
Density |
0.778 g/mL at 25 °C(lit.)
|
Boiling Point |
369 °C(lit.)
|
Melting Point |
42-45 °C(lit.)
|
Flash Point |
>230 °F
|
Vapour Pressure |
<1 mm Hg ( 21.1 °C)
|
Index of Refraction |
1.4455
|
LogP |
8.828
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
0
|
Rotatable Bond Count |
19
|
Heavy Atom Count |
22
|
Complexity |
153
|
Defined Atom Stereocenter Count |
0
|
SMILES |
C([H])([H])(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H]
|
InChi Key |
HOWGUJZVBDQJKV-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C22H46/c1-3-5-7-9-11-13-15-17-19-21-22-20-18-16-14-12-10-8-6-4-2/h3-22H2,1-2H3
|
Chemical Name |
docosane
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: This product requires protection from light (avoid light exposure) during transportation and storage. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO: 16.67 mg/mL (53.67 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 1.67 mg/mL (5.38 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 16.7 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 1.67 mg/mL (5.38 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 16.7 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 1.67 mg/mL (5.38 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.2196 mL | 16.0979 mL | 32.1958 mL | |
5 mM | 0.6439 mL | 3.2196 mL | 6.4392 mL | |
10 mM | 0.3220 mL | 1.6098 mL | 3.2196 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.