yingweiwo

Paeoniflorin sulfite

Alias: Paeoniflorin sulfite
Cat No.:V61854 Purity: ≥98%
Paeoniflorin sulfite is the transformation of Paeoniflorin from Paeoniae Radix Alba during the sulfur fumigation process.
Paeoniflorin sulfite
Paeoniflorin sulfite Chemical Structure CAS No.: 1146967-98-7
Product category: Plants
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Paeoniflorin sulfite is the transformation of Paeoniflorin from Paeoniae Radix Alba during the sulfur fumigation process.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
It is well documented that sulfur-fumigation may induce chemical transformation of Paeoniae Radix Alba. However, the influence of sulfur-fumigated Paeoniae Radix Alba on the chemical constituents of traditional Chinese medicinal formulae has never been reported and confirmed. In the present study, a new strategy was proposed to rapidly reveal the difference of chemical constituents between Si Wu Tang containing sun-dried and sulfur-fumigated Paeoniae Radix Alba by ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry in both negative and positive ion modes combined with principal component analysis and T-test statistical analysis. A total of sixty-six components were identified in both Si Wu Tang containing sun-dried Paeoniae Radix Alba samples and Si Wu Tang containing sulfur-fumigated Paeoniae Radix Alba samples by using target compound analysis. Additionally, forty-seven marker compounds that differentiate Si Wu Tang containing sulfur-fumigated Paeoniae Radix Alba from Si Wu Tang containing sun-dried Paeoniae Radix Alba were found and identified, in which eleven were sulfites that were generated in Si Wu Tang containing sulfur-fumigated Paeoniae Radix Alba, and others were derived from the decomposition of ester compounds and glycosides in all four medicinal herbs of Si Wu Tang due to the existence of sulfinic acid and sulfuric acid when sulfur-fumigated Paeoniae Radix Alba was used. The structures of marker compounds were identified by accurate mass (error) and purity score (obtained by matching a MS/MS pattern from the library to an experimental MS/MS spectrum, based on the relative intensity of the precursor and products). It was proved that the established method could be successfully applied to discriminate Si Wu Tang containing sun-dried and sulfur-fumigated Paeoniae Radix Alba. Meanwhile, the results revealed that sulfur-fumigated Paeoniae Radix Alba could affect the chemical constituents of the other three medicinal herbs in Si Wu Tang in addition to its own chemical transformation, which might alter bioactivities and pharmacokinetics of Si Wu Tang [1].
References

[1]. Ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry combined with statistical analysis for rapidly revealing the influence of sulfur-fumigated Paeoniae Radix Alba on the chemical constituents of Si Wu Tang. Analytical Methods. 2015.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C23H28O13S
Molecular Weight
544.53
Exact Mass
544.12506212
CAS #
1146967-98-7
Appearance
White to off-white solid
SMILES
C[C@]12C[C@@]3([C@@H]4C[C@]1([C@@]4([C@H](O2)O3)COC(=O)C5=CC=CC=C5)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O)OS(=O)O
InChi Key
VOLJTHZHUMLHDS-HEQFYZJVSA-N
InChi Code
InChI=1S/C23H28O13S/c1-20-9-22(36-37(29)30)13-7-23(20,33-18-16(27)15(26)14(25)12(8-24)32-18)21(13,19(34-20)35-22)10-31-17(28)11-5-3-2-4-6-11/h2-6,12-16,18-19,24-27H,7-10H2,1H3,(H,29,30)/t12-,13-,14-,15+,16-,18+,19-,20+,21+,22+,23+/m1/s1
Chemical Name
[(1R,2S,3R,5R,6S,8S)-8-methyl-6-sulfinooxy-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-9,10-dioxatetracyclo[4.3.1.02,5.03,8]decan-2-yl]methyl benzoate
Synonyms
Paeoniflorin sulfite
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 100 mg/mL (183.64 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (4.59 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (4.59 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.8364 mL 9.1822 mL 18.3645 mL
5 mM 0.3673 mL 1.8364 mL 3.6729 mL
10 mM 0.1836 mL 0.9182 mL 1.8364 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us