Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
ln Vitro |
Drug compounds have included stable heavy isotopes of carbon, hydrogen, and other elements, mostly as quantitative tracers while the drugs were being developed. Because deuteration may have an effect on a drug's pharmacokinetics and metabolic properties, it is a cause for concern [1].
|
---|---|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
The dermal flux for 1-heptanol in human skin (epidermis) in vitro is 0.021 mg/sq cm/hr. Metabolism / Metabolites 1-Heptanol is primarily oxidized in the rabbit to heptanoic acid, which either undergoes further oxidation to CO2 or forms an ester glucuronide. There is also a lesser metabolic pathway using direct conjugation with glucuronic acid to form an ether glucuronide conjugate. |
Toxicity/Toxicokinetics |
Toxicity Data
LC50 (mice) = 6,600 mg/m3/2h Non-Human Toxicity Values LD50 Rat (male) oral 6.2 g/kg LD50 Rat (female) oral 5.5 g/kg LD50 Rat oral 3.25 g/kg LD50 Mouse oral 4.3 g/kg LD50 Rabbit dermal 2 g/kg |
References | |
Additional Infomation |
Watery colorless liquid with a weak alcohol odor. Floats on water. (USCG, 1999)
Heptan-1-ol is a primary alcohol that is heptane substituted by a hydroxy group at position 1. It has been isolated from Capillipedium parviflorum. It has a role as a plant metabolite, a fragrance, a flavouring agent and a gap junctional intercellular communication inhibitor. It is a primary alcohol and a heptanol. 1-Heptanol has been reported in Magnolia officinalis, Zea mays, and other organisms with data available. 1-Heptanol is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless liquid with a fragrant odor. It is used as an intermediate, solvent and in cosmetics. Mechanism of Action ... The epicardial surface of 12 isolated-perfused canine left atria was optically mapped before and after 1-50 microM heptanol infusion. At baseline, no sustained (>30 s) AF could be induced in any of the 12 tissues. However, after 2 microM heptanol infusion, sustained AF was induced in 9 of 12 tissues (P < 0.001). Heptanol >5 microM caused loss of 1:1 capture during rapid pacing, causing no AF to be induced. ... Heptanol at 2 microM had no effect on the cellular action potential duration restitution or on the maximal velocity rate over time of the upstroke. The effects of heptanol were reversible. ... The experiments investigated the effects of heptanol on isolated Langendorff-perfused rabbit hearts. Heptanol inhibited both pressure generation and electrical conduction. These effects were completely reversible ... Low concentrations of heptanol (less than 0.3 mM) caused small but significant increases in the delay between the stimulus (delivered to the basal septum) artifact and local activation of the left ventricle, as measured from bipolar electrogram (BEG) recordings. There was a steep increase in the latency between stimulus and left-ventricular activation at concentrations of heptanol above 0.3 mM ... Heptanol decreased repolarization duration, measured from the activation recovery interval (ARI) of BEGs, and monophasic action potential duration at 70% repolarization (MAPD70). Heptanol also reduced left-ventricular developed pressure (LVDP), and the maximum rates of contraction and relaxation of the left ventricle; these effects were concentration dependent and reversible. Changes in ARIs, LVDP and the maximum rates of change of pressure lacked the steep response to 0.3 to 1.0 mM heptanol shown by the latency ... During premature stimulation protocols arrhythmias could be induced in hearts perfused with 0.1 to 0.3 mM heptanol but not at higher concentrations. ... Incubation of n-heptane with microsomal extracts resulted in formation of four isomeric n-heptanols. The relationship of the hydroxylating process to protein concentration and to the formation of the three main alcoholic products, namely 1-heptanol (111706), 2-heptanol (543497), and 3-heptanol (589822), were linear up to 1mg/4 minutes. Treatment of rats with phenobarbitol (50066) for 2 days enhanced hydroxylation and formation of 2-heptanol, 3-heptanol and 4-heptanol about 4 fold, but 1-heptanol was increased only 60 percent. In contrast, 3,4-benzpyrene depressed the formation of 1-heptanol to about 70 percent and increased the formation of 3-heptanol and 4-heptanol slightly. Carbon-monoxide inhibited formation of 1-heptanol. Similar results were obtained with metyrapone. ... Heptanol caused a significant growth inhibition of Xenopus tadpoles and the median lethal dose and mean teratogenic effect at 120 hours were 1.49 and 0.37 millimolar, respectively. The teratogenic index of 4.03 suggested that heptanol is a strong teratogen. |
Molecular Formula |
C7H9D7O
|
---|---|
Molecular Weight |
123.24
|
Exact Mass |
123.164
|
CAS # |
1219804-99-5
|
Related CAS # |
1-Heptanol;111-70-6
|
PubChem CID |
8129
|
Appearance |
Colorless liquid
|
Density |
0.8±0.1 g/cm3
|
Boiling Point |
176.9±3.0 °C at 760 mmHg
|
Melting Point |
-29 °F (USCG, 1999)
-34.6 °C -34.1 °C -34 °C |
Flash Point |
73.9±0.0 °C
|
Vapour Pressure |
0.3±0.7 mmHg at 25°C
|
Index of Refraction |
1.422
|
LogP |
2.47
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
1
|
Rotatable Bond Count |
5
|
Heavy Atom Count |
8
|
Complexity |
35.4
|
Defined Atom Stereocenter Count |
0
|
SMILES |
C(O)([2H])([2H])C([2H])([2H])C([2H])([2H])C([2H])CCC
|
InChi Key |
BBMCTIGTTCKYKF-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C7H16O/c1-2-3-4-5-6-7-8/h8H,2-7H2,1H3
|
Chemical Name |
heptan-1-ol
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 8.1142 mL | 40.5712 mL | 81.1425 mL | |
5 mM | 1.6228 mL | 8.1142 mL | 16.2285 mL | |
10 mM | 0.8114 mL | 4.0571 mL | 8.1142 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.