yingweiwo

p-SCN-Bn-DOTA

Alias: 127985-74-4; p-SCN-Bn-DOTA; (p-SCN-Bn)-dota; p-SCN-Bz-dota; 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraaceticacid, 2-[(4-isothiocyanatophenyl)methyl]-; UNII-13KT123BYW; 13KT123BYW; 2-[4,7,10-tris(carboxymethyl)-6-[(4-isothiocyanatophenyl)methyl]-1,4,7,10-tetrazacyclododec-1-yl]acetic acid;
Cat No.:V64254 Purity: 97%
p-SCN-Bn-DOTA is a bifunctional chelating agent.
p-SCN-Bn-DOTA
p-SCN-Bn-DOTA Chemical Structure CAS No.: 127985-74-4
Product category: Others 12
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description
p-SCN-Bn-DOTA is a bifunctional chelating agent. p-SCN-Bn-DOTA simultaneously chelates radionuclides and connects monoclonal antibodies, which can be used for radioimmunoassay research on tumors.
Biological Activity I Assay Protocols (From Reference)
Targets
Chelating agent
ln Vitro
Five distinct metal ions are complexed with p-SCN-Bn-DOTA: In(III), Y(III), Lu(III), Gd(III), and Cu(II)[2].
Nimotuzumab conjugates were obtained with high purity. Radiolabeling yield and specific activities ranged from 63.6% to 94.5% and from 748 to 1142 MBq/mg, respectively. The stability in DTPA excess and human serum was 95.9% and 93.2% after 10 days, respectively. The radioimmunoconjugate showed specific receptor binding in tumor cell lines. [1]
ln Vivo
Biodistribution in healthy animals showed the typical behavior of the immunoconjugates based on monoclonal antibodies. The study in xenografts mice demonstrated uptake of (177)Lu-Nimotuzumab in the tumor and reticuloendothelial organs. Conclusions: (177)Lu-Nimotuzumab was obtained with high purity and specific activities under optimal conditions without significant loss in immunoreactivity and might be a potential radioimmunoconjugate for radioimmunotherapy of tumors with epidermal growth factor receptor overexpression. [1]
Enzyme Assay
Nimotuzumab was conjugated with S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA), testing different molar ratios. The immunoconjugates were characterized. The radiolabeling with (177)Lu was optimized. Radioimmunoconjugates stability was tested in 2-[bis[2-[bis(carboxymethyl)amino]ethyl]amino]acetic acid (DTPA) excess and human serum. In vitro studies were performed in tumor model cell lines. Receptor-specific binding was tested by competitive inhibition.[1]
Tenatumomab is an anti-tenascin murine monoclonal antibody previously used in clinical trials for delivering radionuclides to tumors by both pre-targeting (biotinylated Tenatumomab within PAGRIT) and direct 131Iodine labeling approaches. Here we present the synthesis and in vitro characterization of three Tenatumomab conjugates to bifunctional chelating agents (NHS-DOTA, NCS-DOTA and NCS-DTPA). Results indicate ST8198AA1 (Tenatumomab-DOTAMA, derived by conjugation of NHS-DOTA), as the most promising candidate in terms of conjugation rate and yield, stability, antigen immunoreactivity and affinity. Labeling efficiency of the different chelators was investigated with a panel of cold metals indicating DOTAMA as the best chelator. Labeling of Tenatumomab-DOTAMA was then optimized with several metals and stability performed confirms suitability of this conjugate for further development. ST8198AA1 represents an improvement of the previous antibody forms because the labeling with radionuclides like 177Lu or 64Cu would allow theranostic applications in patients bearing tenascin expressing tumors. [2]
Animal Protocol
(177)Lu-Nimotuzumab in vivo studies were conducted in healthy and xenograft animals.
References

[1]. Preclinical evaluation of (177)lu-nimotuzumab: a potential tool for radioimmunotherapy of epidermal growth factor receptor-overexpressing tumors. Cancer Biother Radiopharm. 2011 Jun;26(3):287-97.

[2]. Synthesis and preliminary in vitro evaluation of DOTA-Tenatumomab conjugates for theranostic applications in tenascin expressing tumors. Bioorg Med Chem. 2019 Aug 1;27(15):3248-3253.

Additional Infomation
The humanized monoclonal antibody Nimotuzumab (h-R3) has demonstrated an exceptional and better clinical profile than other monoclonal antibodies for immunotherapy of epidermal growth factor receptor-overexpressing tumors. This work deals with the preparation and radiolabeling optimization of (177)Lu-Nimotuzumab and their preclinical evaluation.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C24H33N5O8S
Molecular Weight
551.61
Exact Mass
551.205
CAS #
127985-74-4
PubChem CID
10123265
Appearance
White to off-white solid powder
LogP
-7.2
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
14
Rotatable Bond Count
11
Heavy Atom Count
38
Complexity
863
Defined Atom Stereocenter Count
0
InChi Key
UDOPJKHABYSVIX-UHFFFAOYSA-N
InChi Code
InChI=1S/C24H33N5O8S/c30-21(31)13-26-5-6-27(14-22(32)33)9-10-29(16-24(36)37)20(12-28(8-7-26)15-23(34)35)11-18-1-3-19(4-2-18)25-17-38/h1-4,20H,5-16H2,(H,30,31)(H,32,33)(H,34,35)(H,36,37)
Chemical Name
2-[4,7,10-tris(carboxymethyl)-6-[(4-isothiocyanatophenyl)methyl]-1,4,7,10-tetrazacyclododec-1-yl]acetic acid
Synonyms
127985-74-4; p-SCN-Bn-DOTA; (p-SCN-Bn)-dota; p-SCN-Bz-dota; 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraaceticacid, 2-[(4-isothiocyanatophenyl)methyl]-; UNII-13KT123BYW; 13KT123BYW; 2-[4,7,10-tris(carboxymethyl)-6-[(4-isothiocyanatophenyl)methyl]-1,4,7,10-tetrazacyclododec-1-yl]acetic acid;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 20.83 mg/mL (37.76 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (3.77 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (3.77 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (3.77 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.8129 mL 9.0644 mL 18.1288 mL
5 mM 0.3626 mL 1.8129 mL 3.6258 mL
10 mM 0.1813 mL 0.9064 mL 1.8129 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us