yingweiwo

(α)-Ac4ManNAz

Cat No.:V64425 Purity: ≥98%
(α)-Ac4ManNAz can be taken up by cells and used to modify glycosylation.
(α)-Ac4ManNAz
(α)-Ac4ManNAz Chemical Structure CAS No.: 1213701-11-1
Product category: Others 12
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
50mg
Other Sizes

Other Forms of (α)-Ac4ManNAz:

  • Ac4ManNAz
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
(α)-Ac4ManNAz can be taken up by cells and used to modify glycosylation. (α)-Ac4ManNAz can be used for glycosylation biomarker research.
Biological Activity I Assay Protocols (From Reference)
Targets
glycoprotein labeling reagent
ln Vitro
For cell labeling, tracking, and proteome analysis, Ac4ManNAz (10 μM) has enough labeling efficiency with little effect on biological systems [1]. Major cellular processes such as energy production, cell infiltration, and channel activity are all reduced by Ac4ManNAz (50 μM) [1].
ln Vivo
It is suggested that 10 μM should be used as the optimal concentration of Ac4ManNAz for in vivo cell labeling and tracking of hUCB-EPCs. Additionally, we expect that our approach can be used for understanding the efficacy and safety of stem cell-based therapy in vivo and to help determine the utility of stem cells in downstream experiments.[2]
Enzyme Assay
Mitochondrial membrane potential was measured using JC-1 dye (5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide; Life Technologies) according to the manufacturer's instructions. Briefly, Ac4MAnNAz-treated or untreated cells were incubated with 10 µg/mL JC-1 dye for 15 min, and fluorescence images were taken using a 20x objective. The ratio of red fluorescence JC-1 aggregates and green JC-1 monomers was measured using image J following image background correction.[1]
Cell Assay
Invasion and wound healing
Matrigel (100 μL; 7-8 mg/mL) in serum-free medium was added to each well of a Transwell Corning Costar plate (Costar, Acton, MA, USA) and dried overnight in a culture hood. The following day, 2.5 × 104 cells in serum-free medium were pipetted onto the Matrigel, and complete medium was added to the bottom chamber. Following incubation, the transmembrane filter was stained with crystal violet and the number of cells counted. For wound healing, a small area was cleared along the diameter of the 10 cm dishes through confluent monolayers of A549 and Az4MAnNAz-treated A549 cells using a sterile pipette tip. Cell migration was measured and photographed from the wound/scratch edge every 8 h.[1]
References
[1]. Han SS, et, al. Physiological Effects of Ac4ManNAz and Optimization of Metabolic Labeling for Cell Tracking. Theranostics. 2017 Mar 1;7(5):1164-1176.
[2]. Han SS, et, al. Safety and Optimization of Metabolic Labeling of Endothelial Progenitor Cells for Tracking. Sci Rep. 2018 Sep 4;8(1):13212.
[3]. Spiciarich DR, et, al. Bioorthogonal Labeling of Human Prostate Cancer Tissue Slice Cultures for Glycoproteomics. Angew Chem Int Ed Engl. 2017 Jul 24;56(31):8992-8997.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C16H22N4O10
Molecular Weight
430.37
Exact Mass
430.1336
Elemental Analysis
C, 44.65; H, 5.15; N, 13.02; O, 37.17
CAS #
1213701-11-1
Related CAS #
Ac4ManNAz;361154-30-5
Appearance
Solid powder
LogP
1.2
tPSA
158Ų
SMILES
O([C@H]1[C@@H]([C@@H](COC(=O)C)O[C@H](OC(=O)C)[C@H]1NC(=O)CN=[N+]=[N-])OC(=O)C)C(=O)C
InChi Key
HGMISDAXLUIXKM-LIADDWGISA-N
InChi Code
InChI=1S/C16H22N4O10/c1-7(21)26-6-11-14(27-8(2)22)15(28-9(3)23)13(16(30-11)29-10(4)24)19-12(25)5-18-20-17/h11,13-16H,5-6H2,1-4H3,(H,19,25)/t11-,13+,14-,15-,16?/m1/s1
Chemical Name
Peracetylated N-azidoacetyl-d-mannosamine
HS Tariff Code
2934.99.03.00
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 100 mg/mL (232.36 mM)
Solubility (In Vivo)
≥ 2.50 mg/mL (5.80 mM) in 10% DMSO + 40% PEG300 + 5% Tween-80 + 45% Saline
≥ 2.50 mg/mL (5.80 mM) in 10% DMSO + 90% (20% SBE-β-CD in saline)
≥ 2.50 mg/mL (5.80 mM) in 10% DMSO + 90% Corn oil  (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3236 mL 11.6179 mL 23.2358 mL
5 mM 0.4647 mL 2.3236 mL 4.6472 mL
10 mM 0.2324 mL 1.1618 mL 2.3236 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us