yingweiwo

p-Toluenesulfonamide

Cat No.:V65441 Purity: ≥98%
p-Toluenesulfonamide is a biochemical compound that may be utilized as a biomaterial or organic/chemical reagent for biomedical research.
p-Toluenesulfonamide
p-Toluenesulfonamide Chemical Structure CAS No.: 70-55-3
Product category: Biochemical Assay Reagents
This product is for research use only, not for human use. We do not sell to patients.
Size Price
Other Sizes

Other Forms of p-Toluenesulfonamide:

  • 4-Tolyl-sulfonamide-d4 (p-Tosylamide-d4)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
p-Toluenesulfonamide is a biochemical compound that may be utilized as a biomaterial or organic/chemical reagent for biomedical research.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Urinary excretion of administration p-toluenesulfonamide in rats was approx 80% with half of original compound being oxidized to p-sulfamoylbenzoic acid. More than 90% of /the p-sulfamoylbenzoic acid metabolite/ was excreted unchanged, but urine to feces ratios varied considerably among individual animals.
After oral administration of (14)C-labeled compound to rats the label was rapidly eliminated largely in urine (66-89% of dose), with little in feces (2-8% of dose). (14)C in feces was 4-sulfamoylbenzoic acid, which probably originated in tissues.
Metabolism / Metabolites
/The purpose of this study was/ to study the in vivo and in vitro metabolism and the effect of para-toluene-sulfonamide (PTS) on cytochrome P450 enzymes (CYP450). Total CYP450 and microsome protein content were determined after iv pretreatment of rats with PTS. CYP-specific substrates were incubated with rat liver microsomes. Specific CYP isoform activities were determined by using HPLC. CYP chemical inhibitors added to the incubation mixture were used to investigate the principal CYP isoforms involved in PTS metabolism. The effect of PTS on CYP isoforms was investigated by incubating PTS with specific substrates. The groups treated with 33 and 99 mg/kg per d PTS, respectively, had a total CYP content of 0.66+/-0.17 and 0.60+/-0.12 nmol/mg. The K(m) and V(max) were 92.2 umol/L and 0.0137 nmol/min per mg protein. CYP2C7, CYP2D1 and CYP3A2 might contribute to PTS metabolism in the rat liver. The inhibitory effects of sulfaphenazole and ketoconazole on PTS metabolism were shown to have a mixed mechanism, whereas PTS metabolism was inhibited noncompetitively by quinidine. PTS had little effect on the activities of the selected CYP isoforms. Generally speaking, it is relatively safe for PTS to be co-administered with other drugs. However, care should be taken when administering PTS with CYP inhibitors and the substrates of CYP2C, CYP2D and CYP3A.
Aim of this study was to investigate liver metabolism of with regard to para toluene-sulfonamide (PTS), CYP isoforms, P-glycoprotein (P-gp), and drug interactions. Known substrates, inducers and inhibitors of CYP and inhibitor of P-gp were employed and metabolites were determined with HPLC. Male Wistar rats were pretreated with ip phenobarbital (PB), ketoconazole (Ket), or verapamil (Ver) for 3 days and in situ liver perfusion of PTS was conducted in a recirculation system. Rats were also pretreated with ip PTS (33 mg/kg/day or PTS 99 mg/kg/day) for 4 days before liver perfusions with dextromethorphan (Dex) and phenacetin (Phe) preparations were conducted. Microsome incubation was used to investigate PTS effect on five CYP isoforms and PTS-drug interactions probability with phyllotoxin and 5-fluorouracil (5-FU) in vitro. PTS at 60 min perfusates had areas of 61.4% and 133.6% of the blank control in PB group and Ket group, respectively. The result that PTS metabolism was enhanced by PB and inhibited by Ket treatments suggested liver CYP was attributed to PTS metabolism. PTS mg/kg/day pretreatment slowed down the metabolism of Dex and Phe while in vitro incubations did not show a PTS (0-160 umol/L) effect on CYP activities. PTS metabolite formation when co-incubated with phyllotoxin was 50.7% of the negative control. The potent inhibitory ability of phyllotoxin to PTS requires further clinical investigation regarding in concomitant administration.
Fifteen adult rainbow trout were exposed to water solution of (14)C-tosylchloramide sodium (purity 93.7%, specific activity 1.2 ugCi/uM) at a concentration of 20 mg/L (twice the proposed treatment concentration) for a period of 1 hour and then transferred to fresh water. The temperature of the well water was 11 to 13 °C. ... tosylchloramide sodium was rapidly reduced to the primary metabolite para-toluenesulfonamide, but the levels were not quantified.
...50% of admin ortho- and para-toluenesulfonamides excreted in urine had been metabolized to ortho- and para-sulfamoylbenzoic acids, respectively.
For more Metabolism/Metabolites (Complete) data for p-Toluenesulfonamide (6 total), please visit the HSDB record page.
Biological Half-Life
Fingerlings and juvenile trout were exposed to 20 mg/L (twice the therapeutic concentration) of ring UL-14C-tosylchloramide sodium (purity 93.7%, specific activity 1.2 uCi/uM) for up to 1 hr and then transferred to fresh water for recovery to assess tissue accumulation and distribution of resulting residues. The temperature of the well water was 11.6 to 12.2 °C. The estimated half-life of para-toluenesulfonamide equivalents in fingerlings was 27.3 hours whereas determined by HPLC the half-life of para-toluenesulfonamide residues in whole-body homogenates was 36.3 hours. The estimated half-life of residues in juvenile fish was 32.6 hours, based on radiometric data, while determined by HPLC the half-life for para-toluenesulfonamide residues in whole body samples was 40.3 hours.
Toxicity/Toxicokinetics
Toxicity Summary
IDENTIFICATION AND USE: p-Toluenesulfonamide is a solid. It is used in organic synthesis, in plasticizers and resins, and as a fungicide and mildewicide in paints and coatings. It has been used as experimental therapy. HUMAN STUDIES: It is known as a common contact allergen. ANIMAL STUDIES: No treatment-related effects were observed in a 90 day feeding study on dogs exposed to doses up to 3000 mg/kg feed of a mixture of p-toluenesulfonamide (68%) and ortho-toluenesulfonamide (32%), equivalent to 75 mg/kg bw/day. In a 90 day feeding study, rats were exposed to diets containing 0, 300, 1000 or 3000 mg/kg feed of mixture of p-toluenesulfonamide (68%) and ortho-toluenesulfonamide (32%), equivalent to approximately 15, 50 or 150 mg/kg bw/day. A slight reduction of weight gain and food consumption was present at 3000 mg/kg feed as the only treatment-related effects. Pregnant rats were treated by gavage on gestational days 6-15 with 0, 50, 250, or 500 mg/kg bw of a mixture of p-toluenesulfonamide (68%) and ortho-toluenesulfonamide (32%). At 250 and 500 mg/kg bw maternal weight gain was significantly reduced during the treatment period. At the same dose levels, postimplantation loss demonstrated a dose-related increase and fetal weight was reduced. No teratogenic effect was observed. p-Toluenesulfonamide was studied for mutagenic potential with Salmonella typhimurium/microsome test, basic-test in Drosophila melanogaster, and micronucleus test in mice. No test revealed mutagenic activity.
Non-Human Toxicity Values
LD50 Rat oral 2400 mg/kg bw /Mixture of ortho-toluenesulfonamide (41%) and para-toluenesulfonamide (51%)/
LD50 Rat oral 2330 mg/kg bw
LD50 Rat oral >2000 mg/kg
LD50 Mouse oral 400 mg/kg
LD50 Mouse ip 250 mg/kg
Additional Infomation
Toluene-4-sulfonamide is a sulfonamide that is benzenesulfonamide bearing a methyl group at position 4.
Para-toluenesulfonamide is a low-molecular-weight organic compound with potential antineoplastic activity. Upon intra-tumoral injection, para-toluenesulfonamide increases lysosomal membrane permeabilization (LMP) and the release of cathepsin B. Cytosolic cathepsin B released from lysosomes cleaves and activates proapoptotic B-cell lymphoma 2 (Bcl-2) family member BH3 interacting-domain death agonist (Bid) and poly [ADP-ribose] polymerase 1 (PARP-1), which may induce tumor cell death.
Therapeutic Uses
/CLINICAL TRIALS/ ClinicalTrials.gov is a registry and results database of publicly and privately supported clinical studies of human participants conducted around the world. The Web site is maintained by the National Library of Medicine (NLM) and the National Institutes of Health (NIH). Each ClinicalTrials.gov record presents summary information about a study protocol and includes the following: Disease or condition; Intervention (for example, the medical product, behavior, or procedure being studied); Title, description, and design of the study; Requirements for participation (eligibility criteria); Locations where the study is being conducted; Contact information for the study locations; and Links to relevant information on other health Web sites, such as NLM's MedlinePlus for patient health information and PubMed for citations and abstracts for scholarly articles in the field of medicine. Para-toluenesulfonamide is included in the database.
/EXPL THER/ Severe malignant airway obstruction (SMAO) is a life-threatening form of non-small cell lung carcinoma (NSCLC). /The purpose of this study was/ to determine the efficacy and safety of para-toluenesulfonamide (PTS) intratumoral injection in NSCLC-SMAO. Ninety patients with NSCLC-SAO received repeated courses of PTS intratumoral injection until tumor sizes had reduced by 50% or greater. Primary endpoint was objective alleviation rate, assessed by chest computed tomography (CT) and bronchoscopy, at day 7 and 30 following final dosing. Secondary endpoints included airway obstruction, spirometry, quality-of-life and survival time. In full-analysis set (N=88), using RECIST criteria, PTS treatment resulted in a significant objective alleviation rate [chest CT: 59.1% (95%CI: 48.1%-69.5%), bronchoscopy: 48.9% (95%CI: 38.1%-59.8%) at day 7; chest CT: 43.2% (95%CI: 32.7%-54.2%), bronchoscopy: 29.6% (95%CI: 20.3%-40.2%) at day 30]. There was a remarkable increase in FVC (mean difference: 0.35 liters, 95%CI: 0.16-0.53 liters), FEV1 (mean difference: 0.27 liters, 95%CI: 0.07-0.48 liters), Baseline Dyspnea Index (mean difference: 64.8%, 95%CI: 53.9-74.7%) and Functional Assessment of Cancer Therapy-Lung Cancer Subscale (mean difference: 6.9, 95%CI: 3.8-9.9) at day 7 post-treatment. We noted significantly reduced prevalence of atelectasis (by 42.9%) and Eastern Cooperative Oncology Group physical performance scale (mean difference: 7.2, 95%CI: 3.9-10.5). Median survival time was 394 days in full-analysis set and 460 days in per-protocol set. Adverse events were reported in 64.0% of subjects. Seven severe adverse events (7.9%) were reported, of which three led to death (drug-related in one case). PTS intratumoral injection is effective and well tolerated for palliative therapy of NSCLC-SMAO.
/EXPL THER/ /The purpose was/ to study the effect of percutaneous para-toluenesulfonamide (PTS) injection on transplanted hepatocarcinoma in nude mice. Sixty nude mice with subcutaneous transplanted hepatocarcinoma were randomized into 6 groups, namely PTS, chemotherapy, radiotherapy, PTS+chemotherapy, PTS+radiotherapy and control groups. PTS were injected into the tumor in the nude mouse models as indicated, and the tumor growth rate and survival time of the mice were recorded. All the treatments resulted in effective arrest of the tumor growth, but the effects of PTS+chemotherapy and PTS+radiotherapy were more obvious. No significant difference in the survival time of the mice were noted between the groups. PTS+chemotherapy and PTS+radiotherapy are safe and reliable, and produces better effects than either radiotherapy or chemotherapy alone.
/EXPL THER/ Para-toluenesulfonamide (PTS) has been implicated with anticancer effects against a variety of tumors. In the present study, we investigated the inhibitory effects of PTS on tongue squamous cell carcinoma (Tca-8113) and explored the lysosomal and mitochondrial changes after PTS treatment in vitro. High-performance liquid chromatography showed that PTS selectively accumulated in Tca-8113 cells with a relatively low concentration in normal fibroblasts. Next, the effects of PTS on cell viability, invasion, and cell death were determined. PTS significantly inhibited Tca-8113 cells' viability and invasive ability with increased cancer cell death. Flow cytometric analysis and the lactate dehydrogenase release assay showed that PTS induced cancer cell death by activating apoptosis and necrosis simultaneously. Morphological changes, such as cellular shrinkage, nuclear condensation as well as formation of apoptotic body and secondary lysosomes, were observed, indicating that PTS might induce cell death through disturbing lysosomal stability. Lysosomal integrity assay and western blot showed that PTS increased lysosomal membrane permeabilization associated with activation of lysosomal cathepsin B. Finally, PTS was shown to inhibit ATP biosynthesis and induce the release of mitochondrial cytochrome c. Therefore, our findings provide a novel insight into the use of PTS in cancer therapy.
/EXPL THER/ Hepatocellular carcinoma (HCC) is difficult to eradicate due to its resilient nature. Portal vein is often involved in tumors of large size, which exclude the patient from surgical resection and local ablative therapy, such as percutaneous ethanol injection (PEI) and radiofrequency ablation (RFA) because they were considered neither effective nor safe. Currently, there is almost no effective treatment for HCC of such condition. As a unique antitumor agent in form of lipophilic fluid for local injection, para-toluenesulfonamide (PTS) produces mild side effects while necrotizing the tumor tissues quickly and efficiently. Being largely different from both PEI and RFA therapies, PTS can disseminate itself in tumors more easily than other caustic agents, such as alcohol. So PTS may offer additional benefit to HCCs with vascular involvement. We herein describe a 70-year-old HCC patient who was treated with the combination of PTS injection and transcatheter arterial chemoembolization, resulting in a significantly improved clinical prognosis.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C7H9NO2S
Molecular Weight
171.22
Exact Mass
171.035
CAS #
70-55-3
Related CAS #
4-Tolyl-sulfonamide-d4;1219795-34-2
PubChem CID
6269
Appearance
Monoclinic plates (w+2)
White leaflets
Density
1.3±0.1 g/cm3
Boiling Point
322.2±35.0 °C at 760 mmHg
Melting Point
134-137 °C(lit.)
Flash Point
148.6±25.9 °C
Vapour Pressure
0.0±0.7 mmHg at 25°C
Index of Refraction
1.564
LogP
0.79
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
1
Heavy Atom Count
11
Complexity
209
Defined Atom Stereocenter Count
0
SMILES
S(C1C([H])=C([H])C(C([H])([H])[H])=C([H])C=1[H])(N([H])[H])(=O)=O
InChi Key
LMYRWZFENFIFIT-UHFFFAOYSA-N
InChi Code
InChI=1S/C7H9NO2S/c1-6-2-4-7(5-3-6)11(8,9)10/h2-5H,1H3,(H2,8,9,10)
Chemical Name
4-methylbenzenesulfonamide
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.8404 mL 29.2022 mL 58.4044 mL
5 mM 1.1681 mL 5.8404 mL 11.6809 mL
10 mM 0.5840 mL 2.9202 mL 5.8404 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us