yingweiwo

1,3-Diphenylisobenzofuran (DPBF)

Alias: 1,3-DIPHENYLISOBENZOFURAN; 5471-63-6; Diphenylisobenzofuran; 1,3-Diphenyl-2-benzofuran; Isobenzofuran, 1,3-diphenyl-; DPBF; MFCD00005931; 1,3 Diphenylisobenzofuran;
Cat No.:V67090 Purity: ≥98%
1,3-Diphenylisobenzofuran (DPBF) is used as a selective probe for the detection and quantification of hydrogen peroxide in samples containing different reactive nitrogen and oxygen species (RNOS).
1,3-Diphenylisobenzofuran (DPBF)
1,3-Diphenylisobenzofuran (DPBF) Chemical Structure CAS No.: 5471-63-6
Product category: Reactive Oxygen Species
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
50mg
100mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: =99.00%

Purity: ≥98%

Product Description
1,3-Diphenylisobenzofuran (DPBF) is used as a selective probe for the detection and quantification of hydrogen peroxide in samples containing different reactive nitrogen and oxygen species (RNOS). DPBF is a fluorescent probe. In the past 20 years, it has been believed that it reacts specifically with some reactive oxygen species (such as singlet oxygen and hydroxyl, alkyl oxygen or alkyl peroxy radicals).
Biological Activity I Assay Protocols (From Reference)
Targets
Fluorescent Dye; ROS/Reactive Oxygen Species
ln Vitro
Instruction for use
Preparation of 1,3-Diphenylisobenzofuran (DPBF) working solution
1.1 Preparation of stock solution
Prepare 10 mM DPBF solution in DMSO, e.g. Dissolve 10 mg DPBF in 3.7 mL DMSO.
Note: DPBF stock solution should be aliquoted and stored in the dark (protect from light) at -20 ° C or -80 ° C.
1.2 Preparation of working solution
Dilute the stock solution with preheated serum-free cell culture medium or PBS to prepare a 10-20 μ M DPBF working solution.
Note: Please adjust the concentration of DPBF working solution according to your specific needs, and use freshly prepared working solution.

Cell staining
2.1 Suspension cells: Collect cells by centrifugation and wash twice with PBS for 5 minutes each time.
Adherent cells: Discard the culture medium and add trypsin to digest the cells. After centrifuging and discarding the supernatant, wash twice with PBS for 5 minutes each time.
Note: If flow cytometry is not performed, adherent cells may not undergo digestion treatment.
2.2 Add 1 mL of DPBF working solution and incubate at room temperature for 30 minutes.
2.3 At 400 g, centrifuge at 4 ° C for 3-4 minutes, discard the supernatant.
2.4 Wash the cells twice with PBS, each time for 5 minutes.
After resuspending cells in 1 mL serum-free medium or PBS, detect them under a fluorescence microscope or flow cytometer.

Note:
1. It is recommended to aliquote DPBF stock solution, store it in the dark at -20 ° C or -80 ° C, and avoid repeated freeze/thaw cycles.
2. Please adjust the concentration of DPBF working solution according to your specific needs.
3. This product is only for scientific research by professionals and cannot be used for clinical diagnosis or treatment, nor for food or medicine.
4. For your safety and health, please wear lab clothes and disposable gloves when operating.
Enzyme Assay
DPBF Labelling of Microsomes and Triton x-lO0 Micelles [3]
0.3 /zl of a DPBF stock solution (1 mM in ethanol) were injected into a cuvette containing 3 ml of microsome suspension or 2.5 ml of 0.5 mM Triton x-100 micelles prepared in 50 mM phosphate buffer pH 7.4. The cuvette was then shaken and introduced into a spectrofluorometer for fluorescence measurements. A complete incorporation of DPBF into microsomes usually took few minutes since there is an increase in fluorescence intensity (455 nm) which occurs just upon DPBF injection into the cuvette. The incorporation of DPBF into Triton x-100 micelles was faster than in microsomes. Upon complete DPBF incorporation in microsomes, the fluorescence intensity was stable for a few seconds and then started to decrease, while in Triton x-100 micelles the fluorescence intensity was stable for hours.
References

[1]. HKOH-1: A Highly Sensitive and Selective Fluorescent Probe for Detecting Endogenous Hydroxyl Radicals in Living Cells. Angew Chem Int Ed Engl. 2017 Oct 9;56(42):12873-12877.

[2]. Calcium carbonate-methylene blue nanohybrids for photodynamic therapy and ultrasound imaging. Sci China Life Sci. 2018 Apr;61(4):483-491.

[3]. On the use of 1,3-diphenylisobenzofuran (DPBF). Reactions with carbon and oxygen centered radicals in model and natural systems. Research on Chemical Intermediates volume 19, pages395-405(1993).

Additional Infomation
The hydroxyl radical (. OH), one of the most reactive and deleterious reactive oxygen species (ROS), has been suggested to play an essential role in many physiological and pathological scenarios. However, a reliable and robust method to detect endogenous . OH is currently lacking owing to its extremely high reactivity and short lifetime. Herein we report a fluorescent probe HKOH-1 with superior in vitro selectivity and sensitivity towards . OH. With this probe, we have calibrated and quantified the scavenging capacities of a wide range of reported . OH scavengers. Furthermore, HKOH-1r, which was designed for better cellular uptake and retention, has performed robustly in detection of endogenous . OH generation by both confocal imaging and flow cytometry. Furthermore, this probe has been applied to monitor . OH generation in HeLa cells in response to UV light irradiation. Therefore, HKOH-1 could be used for elucidating . OH related biological functions.[1]
Photodynamic therapy plays an important role in cancer treatment. In this work, methylene blue (MB)-embedded calcium carbonate nanorods (CaCO3-MB NRs) have been synthesized for pH-responsive photodynamic therapy and ultrasound imaging. The morphology of CaCO3-MB NRs can be controlled by modulating the concentration of Na2CO3 aqueous solution. The generation of effective reactive oxygen species (ROS) were confirmed by 1,3-diphenylisobenzofuran (DPBF) probe. Both photodynamic therapy performance and echogenic performance of CaCO3-MB NRs were investigated to confirm the feasibility of CaCO3-MB nanohybrids for ultrasound image-guided photodynamic therapy.[2]
1,3-diphenylisobenzofuran (DPBF) is a fluorescent molecule which possesses a highly specific reactivity towards singlet oxygen (1O2) forming an endoperoxide which decomposes to give 1,2-dibenzoylbenzene. This reaction between DPBF and 1O2 can be followed by measuring the decrease in fluorescence intensity of DPBF. In order to check the specificity of DPBF toward free radicals a series of experiments was carried out in Triton-X micelles and in natural systems (rat liver microsomes), in which DPBF was reacted with hydroxy (HO•), alkyloxy (RO•), alkylperoxy (ROO•), and C-centered radicals (2-cyanoisopropyl radical). In all cases, the DPBF is rapidly transformed to 1,2-dibenzoylbenzene in the case of O-centered radicals and to the corresponding adduct in the case of 2-cyanoisopropyl radical. The experiments in the model systems were also carried out from the chemical point of view and the reaction products were isolated and identified. From the results obtained, it should be stressed that DPBF must be used with caution in complex biological systems for the detection of 1O2, as it also reacts with different radical species.[3]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H14O
Molecular Weight
270.33
Exact Mass
270.104
CAS #
5471-63-6
PubChem CID
21649
Appearance
Light yellow to green yellow solid powder
Density
1.1±0.1 g/cm3
Boiling Point
437.5±14.0 °C at 760 mmHg
Melting Point
128-130 °C(lit.)
Flash Point
226.7±6.9 °C
Vapour Pressure
0.0±1.0 mmHg at 25°C
Index of Refraction
1.642
LogP
6.47
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
1
Rotatable Bond Count
2
Heavy Atom Count
21
Complexity
295
Defined Atom Stereocenter Count
0
InChi Key
ZKSVYBRJSMBDMV-UHFFFAOYSA-N
InChi Code
InChI=1S/C20H14O/c1-3-9-15(10-4-1)19-17-13-7-8-14-18(17)20(21-19)16-11-5-2-6-12-16/h1-14H
Chemical Name
1,3-diphenyl-2-benzofuran
Synonyms
1,3-DIPHENYLISOBENZOFURAN; 5471-63-6; Diphenylisobenzofuran; 1,3-Diphenyl-2-benzofuran; Isobenzofuran, 1,3-diphenyl-; DPBF; MFCD00005931; 1,3 Diphenylisobenzofuran;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: (1). This product requires protection from light (avoid light exposure) during transportation and storage.  (2). Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 5.56 mg/mL (20.57 mM)
H2O: < 0.1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: 0.56 mg/mL (2.07 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 5.6 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 2: 0.56 mg/mL (2.07 mM) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 5.6 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.6992 mL 18.4959 mL 36.9918 mL
5 mM 0.7398 mL 3.6992 mL 7.3984 mL
10 mM 0.3699 mL 1.8496 mL 3.6992 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us