Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
50mg |
|
||
100mg |
|
||
Other Sizes |
|
References |
|
---|---|
Additional Infomation |
Fosciclopirox is a phosphoryloxymethyl (POM) ester-based prodrug of ciclopirox (CPX), a synthetic, broad-spectrum antifungal agent with antibacterial, anti-inflammatory and potential antineoplastic activities. Upon intravenous administration of fosciclopirox, the POM moiety is cleaved off by phosphatases and the active metabolite CPX is released. Although its exact anticancer mechanism is not yet fully elucidated, CPX has been shown to inhibit tumor cell proliferation, induce apoptosis, and reduce tumor cell mobility in certain cancer types. CPX inhibits Notch1 activation and inhibits the Notch1-mediated signaling pathway, which is upregulated in many cancer cell types. This inhibits Notch downstream target proteins, inhibits the expression of gamma-secretase complex proteins, and prevents proliferation in susceptible cancer cells. CPX inhibits the iron-containing enzymes, catalase and peroxidase, which facilitate the decomposition of hydrogen peroxide, a reactive oxygen species (ROS) involved in oxidative stress. CPX also inhibits the iron-dependent enzyme ribonucleotide reductase, which is essential in DNA synthesis. CPX downregulates protein expression of cyclin D1 and cyclin E1, as well as their enzymatic counterparts cyclin-dependent kinases 4 and 2 (CDK4 and CDK2), which may inhibit tumor cell proliferation by slowing cell cycle progression from G1/G0 to S phase. Further, CPX may induce apoptosis by downregulating the expression of anti-apoptotic proteins, Bcl-xL and survivin, and increasing cleavage of Bcl-2. Additionally, CPX may inhibit tumor cell proliferation, survival and motility by inhibiting the phosphorylation of p70 S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1), two downstream effector molecules of the mammalian target of rapamycin complex 1 (mTORC1). The CPX-POM prodrug improves the solubility of CPX and increases systemic efficacy.
|
Molecular Formula |
C13H20NO6P
|
---|---|
Molecular Weight |
317.27
|
Exact Mass |
317.102
|
CAS # |
1380539-06-9
|
PubChem CID |
67773619
|
Appearance |
Off-white to light yellow solid powder
|
Density |
1.4±0.1 g/cm3
|
Boiling Point |
484.8±55.0 °C at 760 mmHg
|
Flash Point |
247.0±31.5 °C
|
Vapour Pressure |
0.0±2.6 mmHg at 25°C
|
Index of Refraction |
1.566
|
LogP |
1.5
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
6
|
Rotatable Bond Count |
5
|
Heavy Atom Count |
21
|
Complexity |
503
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
NTKBXPWLNROYPE-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C13H20NO6P/c1-10-7-12(11-5-3-2-4-6-11)14(13(15)8-10)19-9-20-21(16,17)18/h7-8,11H,2-6,9H2,1H3,(H2,16,17,18)
|
Chemical Name |
(2-cyclohexyl-4-methyl-6-oxopyridin-1-yl)oxymethyl dihydrogen phosphate
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO: 100 mg/mL (315.19 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.08 mg/mL (6.56 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.08 mg/mL (6.56 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.08 mg/mL (6.56 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.1519 mL | 15.7594 mL | 31.5189 mL | |
5 mM | 0.6304 mL | 3.1519 mL | 6.3038 mL | |
10 mM | 0.3152 mL | 1.5759 mL | 3.1519 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.