Zamaporvint (RXC004)

Cat No.:V69126 Purity: ≥98%
Zamaporvint (RXC004) is an orally bioactive, selective Wnt inhibitor.
Zamaporvint (RXC004) Chemical Structure CAS No.: 1900754-56-4
Product category: Wnt
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Zamaporvint (RXC004) is an orally bioactive, selective Wnt inhibitor. Zamaporvint targets the membrane-bound ortho-acyltransferase Porcupine and inhibits Wnt ligand palmitoylation, secretion, and pathway activation. Zamaporvint displays favorable pharmacokinetic profiles and potent antiproliferation effects in Wnt ligand-dependent colorectal and pancreatic cell lines. Zamaporvint has multiple anti-tumor mechanisms and may be used in cancer research. Yes Yes
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Zamaporvint (300 nM, 48 h) treatment of L-wnt3a cells decreased, with an IC50 of 64 pM, the conditioned medium's ability to activate the β-catenin-responsive luciferase reporter gene. This effect was concentration-dependent. Luciferase activity was restored upon the addition of recombinant Wnt3a, suggesting that downstream Wnt signaling was unaffected [1]. The impact of Zamaporvint (100 nM, 24 h) on proliferation is indicative of c-Myc mRNA downregulation that is concentration-dependent. has been found to have decreased immunosuppression at the same dose as after administration The auxiliary role of sex [1]. It also decreases the percentage of cells in S phase and strongly inhibits the expression of the mitotic marker phospho-histone-H3 in cells with abnormalities upstream of Wnt pathway components, indicating cell cycle arrest. In plasma, zamaprovint (20 μM, 18 h) varies between 2.5% and 7.5% across species, while microsomal CLint values span from 3.9 to 31.6 μL/min.mg, with mice and dogs having the lowest expected clearance rates. has the greatest clearance rate, while human and rodent clearance rates are lower [1]. In MDR1-MDCKII cells, zamaporvint (10 μM, 2 h) exhibits some efflux and good intrinsic permeability, but not in Caco-2 cells [1].
ln Vivo
In Wnt Inhibitory ligand-dependent SNU-1411, AsPC1, and HPAF II models, Zamaporvint (1.5 mg/kg or 5 mg/kg orally twice daily, or 5 mg/kg Zamaporvint orally once daily, for 28 days) reduces tumor growth and Wnt-responsive gene expression (including cMyc); tumor growth was unaffected in the Wnt ligand-independent HCT116 xenograft model[1]. In the B16F10 "cold" tumor model, zamaprovint (1.5 mg/kg, 5 mg/kg, once daily) inhibited immune evasion and decreased the number of Ki67-positive cells in the entire tumor area, with the impact being more noticeable in differentiated tumor areas[1]. Zamaporvint (1.5 or 5 mg/kg once daily) increases the percentage of regulatory T cells within CD8+/CT26 tumors, decreases B16F10 tumor-resident myeloid-derived suppressor cells, and collaborates with anti-programmed cell death protein-1 (PD-1, HY-P73361)[1]. Zamaporvint's pharmacokinetic characteristics in mice[1]
Cell Assay
Western Blot Analysis[1]
Cell Types: L-Wnt5a
Tested Concentrations: 300 nM
Incubation Duration: 48 h
Experimental Results: Activated the β-catenin-responsive luciferase reporter gene in a concentration-dependent manner, with an IC50 of 64 pmol/L.

Apoptosis Analysis[1]
Cell Types: L-Wnt5a
Tested Concentrations: 100 nM
Incubation Duration: 24 h
Experimental Results: Downregulated c-Myc mRNA and reduce the proportion of cells in S-phase, and strongly inhibited expression of the mitosis marker phospho-histone-H3 in cells with upstream aberrations in Wnt pathway components.
Animal Protocol
Animal/Disease Models: SCID-Beige mice were dosed at Translational Drug Discovery with vehicle[1]
Doses: 1.5 mg/kg or 5 mg/kg; 5 mg/kg
Route of Administration: 1.5 mg/kg or 5 mg/kg orally twice (two times) daily, or 5 mg/kg RXC004 orally one time/day, for 28 days
Experimental Results: decreased in tumor growth, and inhibition of Wnt-responsive gene expression including cMyc, was observed in the Wnt ligand– dependent SNU-1411, AsPC1, and HPAFII models. No effected tumor growth in the Wnt ligand–independent HCT116 xenograft mode.

Animal/Disease Models: HPAF-II (5 × 106 cells; athymic nude mice), AsPC1 (3 × 106 cells; athymic nude mice), and SNU-1411 (1×107 cells; NOD-SCID mice) were implanted bilaterally, subcutaneously, whereas HCT116 (3 × 106 cells; athymic nude mice) were implanted in a single flank[1]
Doses: Dosing was either 1.5 mg/kg twice (two times) daily RXC004 for 7–13 days then one time/day for the remainder of study (up to 29 days), or 28 days 1.5 mg/kg twice (two times) daily RXC004 for HCT116
Route of Administration: po
Experimental Results: Demonstrated to inhibit tumor grow
References
[1]. Phillips C, The Wnt Pathway Inhibitor RXC004 Blocks Tumor Growth and Reverses Immune Evasion in Wnt Ligand-dependent Cancer Models. Cancer Res Commun. 2022 Sep 2;2(9):914-928.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C21H16F3N7O
Molecular Weight
439.39
CAS #
1900754-56-4
SMILES
C1N(CC(NC2=NC=C(C3=NC=CN=C3)C=C2)=O)C(C)=C(C2C=CN=C(C(F)(F)F)C=2)N=1
Solubility Data
Solubility (In Vitro)
DMSO: 125 mg/mL (284.49 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.2759 mL 11.3794 mL 22.7588 mL
5 mM 0.4552 mL 2.2759 mL 4.5518 mL
10 mM 0.2276 mL 1.1379 mL 2.2759 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top