yingweiwo

Quercetin hydrate

Alias: Quercetin hydrate; 849061-97-8; 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one hydrate; 1001001-36-0; Quercetin hydrate; Quercetin (hydrate); 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one;hydrate; Quercetin monohydrate;
Cat No.:V69228 Purity: ≥98%
Quercetin hydrate is a naturally occurring flavonoid that activates or inhibits the activity of many proteins.
Quercetin hydrate
Quercetin hydrate Chemical Structure CAS No.: 849061-97-8
Product category: Reactive Oxygen Species
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Quercetin hydrate:

  • Taxifolin-d3-Dihydroquercetin-d3;-Taxifolin-d3)
  • 6-C-Methylquercetin-3,4'-dimethyl ether
  • Quercetin-13C3 (quercetin 13C3)
  • Quercetin 3-O-(6″-O-malonyl)-β-D-galactoside
  • Quercetin-3,7-diglucoside,4‘uronic acid
  • Quercetin (Sophoretin; NSC 9221; Kvercetin)
  • Quercetin-d3 (quercetin d3)
  • Quercetin Dihydrate
  • Quercetin-d5 (quercetin d5)
  • (±)-Taxifolin-13C3 ((±)-Dihydroquercetin-13C3)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Quercetin hydrate is a naturally occurring flavonoid that activates or inhibits the activity of many proteins. Quercetin hydrate can activate SIRT1, inhibit PI3K, and inhibit PI3Kγ, PI3Kδ, and PI3Kβ with IC50s of 2.4 μM, 3.0 μM, and 5.4 μM respectively.
Biological Activity I Assay Protocols (From Reference)
Targets
IC50: 2.4±0.6 μM (PI3K γ), 3.0±0.0 μM (PI3K δ), 5.4±0.3 μM (PI3K β)[1]
ln Vitro
Quercetin hydrate is a phytochemical or plant-based substance that is added to foods, beverages, and supplements. It has been shown in multiple studies to possess antioxidant and anti-inflammatory qualities, and a host of other possible health advantages are being investigated. The IC50 of quercetin hydrate, a PI3K inhibitor, ranges from 2.4 to 5.4 μM. Strong inhibitions of PI3K and Src kinase, moderate inhibition of Akt1/2, and minor effects on PKC, p38, and ERK1/2 are observed with quercetin hydrate[1]. Quercetin hydrate reduces the production of LDH% in response to TNF, the adherence of neutrophils to bovine pulmonary artery endothelial cells (BPAEC) that is dependent on EC, and the synthesis and proliferation of BPAEC DNA [2].
ln Vivo
The growth of PC-3 cell xenograft tumors and human prostate cancer LNCaP was more effectively inhibited when quercetin hydrate (75 mg/kg) and 2-methoxyestradiol were combined [3].
In the present study, researchers determined whether their combination could inhibit LNCaP and PC-3 xenograft tumor growth in vivo and explored the underlying mechanism. Human prostate cancer LNCaP and PC-3 cells were inoculated subcutaneously in male BALB/c nude mice. When xenograft tumors reached about 100 mm3, mice were randomly allocated to vehicle control, quercetin or 2-Methoxyestradiol singly treated and combination treatment groups. After therapeutic intervention for 4 weeks, combination treatment of quercetin and 2-ME i) significantly inhibited prostate cancer xenograft tumor growth by 46.8% for LNCaP and 51.3% for PC-3 as compared to vehicle control group, more effective than quercetin (28.4% for LNCaP, 24.8% for PC3) or 2-ME (32.1% for LNCaP, 28.9% for PC3) alone; ii) was well tolerated by BALB/c mice and no obvious toxic reactions were observed; iii) led to higher Bax/Bcl-2 ratio, cleaved caspase-3 protein expression and apoptosis rate; and iv) resulted in lower phosphorylated AKT (pAKT) protein level, vascular endothelial growth factor protein and mRNA expression, microvascular density and proliferation rate than single drug treatment. These effects were more remarkable compared to vehicle group. Therefore, combination of quercetin and 2-ME can serve as a novel clinical treatment regimen owning the potential of enhancing antitumor effect on prostate cancer in vivo and lessening the dose and side effects of either quercetin or 2-ME alone. These in vivo results will lay a further solid basis for subsequent researches on this novel therapeutic regimen in human prostate cancer.[3]
Enzyme Assay
alpha(2)beta(1) and alpha(IIb)beta(3) integrins, that support platelet adhesion to collagen and fibrinogen, respectively, share common signaling molecules. The effect of quercetin on platelet static adhesion to collagen and fibrinogen was assessed and correlated with its kinase inhibitory activity. Quercetin strongly abrogated PI3K and Src kinases, mildly inhibited Akt1/2, and slightly affected PKC, p38 and ERK1/2. Quercetin or the combined use of adenosine diphosphate and thromboxane A(2) inhibitors abrogated platelet spreading on these surfaces to a similar extent. We suggest that the inhibitory effect of quercetin on platelet kinases blocks early signaling events preventing a complete platelet spreading.[1]
Cell Assay
The purpose of this study was to evaluate the inhibition of RTEC senescence and renal fibrosis by quercetin/strong> and explore the underlying mechanisms. We found that quercetin attenuated RTEC senescence induced by angiotensin II (AngII) in vitro and unilateral ureteral obstruction in vivo. Moreover, we demonstrated that mitochondrial abnormalities such as elevated reactive oxygen species, decreased membrane potential, and fragmentation and accumulation of mitochondrial mass, occurred in AngII-treated RTECs. Quercetin treatment reversed these effects. Furthermore, quercetin enhanced mitophagy in AngII-treated RTECs, which was markedly reduced by treatment with mitophagy-specific inhibitors. Sirtuin-1 (SIRT1) was involved in quercetin-mediated PTEN-induced kinase 1 (PINK1)/Parkin-associated mitophagy activation. Pharmacological antagonism of SIRT1 in AngII-treated RTECs blocked the effects of quercetin on mitophagy and cellular senescence. Finally, quercetin alleviated kidney fibrosis by reducing RTEC senescence via mitophagy. Collectively, the antifibrotic effect of quercetin involved inhibition of RTEC senescence, possibly through activation of SIRT1/PINK1/Parkin-mediated mitophagy. These findings suggest that pharmacological elimination of senescent cells and stimulation of mitophagy represent effective therapeutic strategies to prevent kidney fibrosis[4].
Animal Protocol
Before the formal in vivo experiment, we evaluated the toxicity of two combined drugs and vehicle that would be administrated simultaneously using two groups of male BALB/c nude mice (n = 5 each). Solvent for quercetin was 25% hydroxypropyl-β-cyclodextrin (HPβCD, w/v in ddH2O) and for 2-Methoxyestradiol was 25% HPβCD containing 0.5% carboxymethyl cellulose (CMC, w/v in ddH2O). Drug group were given the two drugs, namely dissolved quercetin and 2-ME, and vehicle control group were given two drug-free vehicles, namely 25% HPβCD containing or not containing 0.5% CMC. After operation, toxic reaction was observed in the mice of both groups represented as poor mental state, lightly twisting the body, convulsion and occasional moderate haematuria that were in consistent with the description of Ehteda A and may be attributed to high concentration of HPβCD. For this reason, in the subsequent experiment, combination of quercetin and 2-ME was carried out in this way: quercetin was given on day 1, followed by 2-ME given on day 2.[3]
Mice were inoculated subcutaneously with 5×105 PC-3 cells suspended in 100μL PBS and 2×108 LNCaP cells suspended in 100μL of matrigel and PBS mixture (1:1) on the right back. When xenograft tumors reached a volume of approximately 100mm3, mice were randomly assigned to four groups (n = 8 each group) and treated intraperitoneally. Therapeutic schedule based on our in vitro results, preliminary experiments and many other researchers' studies was as follows: (1) Vehicle control group: vehicle of quercetin on day 1, vehicle of 2-ME on day 2, (2) Quercetin treated group: quercetin 75mg/kg on day 1, vehicle of 2-ME on day 2, (3) 2-ME treated group: vehicle of quercetin on day 1, 2-ME 150mg/kg on day 2, (4) Combination treatment group: quercetin 75mg/kg on day 1, 2-ME 150mg/kg on day 2. Two days was a treatment cycle and the whole treatment process lasted for 4 weeks. Tumor sizes were monitored every 2 days using caliper and tumor volume were calculated according to the formula: L×S2×0.5, in which L represents the longest diameter and S represents the shortest diameter of tumor. Mice were weighed as well. At the end of treatment procedure, on day 29, mice were anesthetized with chloral hydrate and sacrificed by cervical dislocation. Xenograft tumors were taken out quickly and weighed. One part of it was put into liquid nitrogen immediately for future biomarker analysis and the other part was fixed in 10% neutral buffered formalin for immunohistochemical analysis. Serum biochemical parameters such as ALT, AST, creatinine and urea nitrogen that reflected drug toxicity were also detected.[3]
References

[1]. Effect of quercetin on platelet spreading on collagen and fibrinogen and on multiple platelet kinases. Fitoterapia. 2010 Mar;81(2):75-80.

[2]. Inhibitory effects of protein kinase C inhibitors on tumor necrosis factor induced bovine pulmonary artery endothelial cell injuries. Yao Xue Xue Bao. 1996;31(3):176-81.

[3]. Combination of Quercetin and 2-Methoxyestradiol Enhances Inhibition of Human Prostate Cancer LNCaP and PC-3 Cells Xenograft Tumor Growth. PLoS One. 2015 May 26;10(5):e0128277.

[4]. Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis. Life Sci. 2020 Jul 20;118116.

Additional Infomation
Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) National Toxicology Program, Institute of Environmental Health Sciences, National Institutes of Health (NTP). 1992. National Toxicology Program Chemical Repository Database. Research Triangle Park, North Carolina.
Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3'-, 4'-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate.
Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury.
View More

Quercetin has been reported in Salvia miltiorrhiza, Hydrangea serrata, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators.


Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions. (A7896) A7896: Perez-Vizcaino F, Duarte J, Andriantsitohaina R: Endothelial function and cardiovascular disease: effects of quercetin and wine polyphenols. Free Radic Res. 2006 Oct;40(10):1054-65. PMID:17015250
Quercetin is a metabolite found in or produced by Saccharomyces cerevisiae. A flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin.
Therapeutic Uses
Quercetin has been used in medicine to decrease capillary fragility. IARC. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Geneva: World Health Organization, International Agency for Research on Cancer, 1972-PRESENT. (Multivolume work). Available at: https://monographs.iarc.fr/ENG/Classification/index.php, p. V73 P498 (1999)

/EXPL THER/ ... In a randomized, double-blind, placebo-controlled trial ... /among patients with category III chronic prostatitis syndromes (nonbacterial chronic prostatitis and prostatodynia)/ ... Significant improvement was achieved in the treated group, as measured by the NIH chronic prostatitis score. Some 67% of the treated subjects had at least 25% improvement in symptoms, compared with 20% of the placebo group achieving this same level of improvement. In a follow up, unblind, open-label study ... quercetin was combined with bromelain and papain, which may enhance its absorption. In this study, 82% achieved a minimum 25% improvement score.
Drug Warnings
Although quercetin seems to have potential as an anticancer agent, future studies are needed, because most studies are based on in vitro experiments using high concn of quercetin unachievable by dietary ingestion, and because its beneficial effects on cancer are still inconclusive in animal and/or human studies. Coates, P.M., Blackman, M.R., Cragg, G.M., Levine, M., Moss, J., White, J.D. (Ed), Encyclopedia of Dietary Supplements. Marcel Dekker, New York, NY, p. 580 (2005)

... Quercetin has been shown to protect low density lipoprotein (LDL) from oxidation and prevent platelet aggregation. It was also reported to inhibit the proliferation and migration of smooth muscle cells ... Quercetin was reported to significantly lower the plasma lipid, lipoprotein and hepatic cholesterol levels, inhibit the production of oxLDL produced by oxidative stress, and protect an enzyme, which can hydrolyzed specific lipid peroxides in oxidized lipoproteins and in atherosclerotic lesions ... /It/ induced endothelium-dependent vasorelaxation in rat aorta via incr nitric oxide production ... Quercetin and its glycosides were also reported to inhibit the angiotensin-converting enzyme activity, and ANG II-induced JNK activation inducing vascular smooth muscle cell (VSMC) hypertrophy ... However, some effects may not be feasible or negligible in physiological conditions, because concn of quercetin in most studies are too high to be achieved by dietary ingestion ... and beneficial effects of quercetin on cardiovascular diseases are still inconclusive in human studies
After oral administration of a single dose of 4 g quercetin to four male and two female volunteers, neither quercetin nor its conjugates was detected in the blood or urine during the first 24 hr; 53% of the dose was recovered in the feces within 72 hr. After a single intravenous injection of 100 mg quercetin to six volunteers, the blood plasma levels declined biphasically, with half-lives of 8.8 min and 2.4 hr; protein binding exceeded 98%. In the urine, 0.65% of the intravenous dose was excreted as unchanged quercetin and 7.4% as a conjugate within 9 hr; no further excretion occurred up to 24 hr ... IARC. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Geneva: World Health Organization, International Agency for Research on Cancer, 1972-PRESENT. (Multivolume work). Available at: https://monographs.iarc.fr/ENG/Classification/index.php, p. V73 P501 (1999)

When 14C-quercetin was administered orally to ACI rats, about 20% of the administered dose was absorbed from the digestive tract, more than 30% was decomposed to yield 14-CO2 & about 30% was excreted unchanged in feces..
Metabolism / Metabolites
The glycosides are hydrolyzed in the body to corresponding aglycones, which are then further metabolized by scission of the heterocyclic ring to give 3,4-dihydroxy-phenyl-substituted acids ... The site of ring scission depends on structure ... with flavonols (quercetin) scission occurs at the 1,2 & 3,4 bonds to yield homoprotocatechuic acid ... These acids are further metabolized by beta-oxidation of acyl side-chain, o-methylation & demethylation, & aromatic dehydroxylation. Parke, D. V. The Biochemistry of Foreign Compounds. Oxford: Pergamon Press, 1968., p. 151

o-Beta-hydroxyethylated derivatives of quercetin were isolated from urine samples & separated by HPLC. The 5,7,3',4'-tetra compd was separated from 3,7,3',4'-tetra derivative. The 7,3',4'-tri & 7'-mono compounds gave 1 common peak, separated from the peak for the 7,4'-di compd.
Biological Half-Life
One male and one female volunteer were given a diet containing quercetin glucosides (64.2 mg expressed as the aglycone) ... Half-lives /were/ 3.8 hr for the distribution phase and 16.8 hr for the elimination phase ... /Quercetin glucosides/ IARC. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Geneva: World Health Organization, International Agency for Research on Cancer, 1972-PRESENT. (Multivolume work). Available at: https://monographs.iarc.fr/ENG/Classification/index.php, p. V73 P501 (1999)

...The elimination half-life of quercetin is approx 25 hr.
Mechanism of Action
Quercetin is a specific quinone reductase 2 (QR2) inhibitor, an enzyme (along with the human QR1 homolog) which catalyzes metabolism of toxic quinolines. Inhibition of QR2 in plasmodium may potentially cause lethal oxidative stress. The inhibition of antioxidant activity in plasmodium may contribute to killing the malaria causing parasites.

... The 5, 7, 3', 4'-hydroxyl groups on quercetin are capable of donating electrons to quench various radical oxygen species (ROS) and other radical species ... Oxygen radicals (superoxide, hydrogen peroxide, hydroxyl radicals, and other related radicals) ... are quenched by ... antioxidant systems, including antioxidant cmpd, which balance cellular redox status involved in cellular processes for cell homeostasis ... Generally, 3 criteria are considered to assess the antioxidant activity of flavonoids in vitro: first, B ring with 2 hydroxyl groups (adjacent), second, C ring with 2,3-double bond, 4-oxo, and 3-hydroxyl group, and third, A ring with 5,7-dihydroxyl groups. Quercetin meets all 3 criteria, indicating stronger antioxidant activity ... The flavonol was reported to prevent radicals from damaging carbohydrates, proteins, nucleotides, and lipids ... The glucuronide conjugates found in the plasma were also reported to have potent antioxidant activity, indicating that the activity may be retained depending on conjugation positions ... Coates, P.M., Blackman, M.R., Cragg, G.M., Levine, M., Moss, J., White, J.D. (Ed), Encyclopedia of Dietary Supplements. Marcel Dekker, New York, NY, p. 579 (2005)

Cytokines such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in colon cancer cells through engagement of death receptors. Nevertheless, evading apoptosis induced by anticancer drugs characterizes many types of cancers. This results in the need for combination therapy. In this study ... whether the flavonoid quercetin could sensitize human colon adenocarcinoma cell lines to TRAIL-induced apoptosis /was investigated/ ... Quercetin enhanced TRAIL-induced apoptosis by causing the redistribution of DR4 and DR5 into lipid rafts. Nystatin, a cholesterol-sequestering agent, prevented quercetin-induced clustering of death receptors and sensitization to TRAIL-induced apoptosis in colon adenocarcinoma cells ... Qercetin, in combination with TRAIL, triggered the mitochondrial-dependent death pathway, as shown by Bid cleavage and the release of cytochrome c to the cytosol. Together /the/ findings propose that quercetin, through its ability to redistribute death receptors at the cell surface, facilitates death-inducing signaling complex formation and activation of caspases in response to death receptor stimulation. Based on these results, this study provides a challenging approach to enhance the efficiency of TRAIL-based therapies.
Methods of Manufacturing
Quercetin ... has been obtained for use as a natural coloring agent (Natural Yellow 10) by the rapid extraction of powdered quercitron bark with dilute ammonia and boiling of the extract with sulphuric acid ... The first successful synthesis of quercetin was reported in 1962 ... in which treatment of 2-methoxyacetyl phloroglucinol with O-benzylvanillic acid anhydride in triethylamine and then with potassium hydroxide produced 5,7-dihydroxy-4'-benzyloxy-3,3'- dimethexyflavone. The benzyl ether was cleaved with acetic acid-hydrochloric acid, and the methyl ethers were then cleaved with hydriodic acid to produce quercetin.
Hepatotoxicity
Quercetin supplements have not been linked serum aminotransferase elevations during therapy, although there have been few focused studies of its hepatic safety. Furthermore, there have been no published reports of clinically apparent liver injury attributable to quercetin. Indeed, many in vitro and in vivo studies have shown that quercetin protects against hepatic injury caused by drugs and toxins including acetaminophen and cancer chemotherapeutic agents. These hepatoprotective effects have not been demonstrated in prospective clinical trials in humans.
Likelihood score: E (unlikely cause of clinically apparent liver injury).
Other Names: Often a component in Bioflavonoid Extracts
Drug Class: Herbal and Dietary Supplements

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H10O7.XH2O
Molecular Weight
320.2510
Exact Mass
320.053
CAS #
849061-97-8
Related CAS #
Quercetin;117-39-5; Quercetin-d3;263711-79-1; 117-39-5; Quercetin dihydrate;6151-25-3;Quercetin hydrate;849061-97-8; Quercetin-d5;263711-78-0;Quercetin-13C3
PubChem CID
16212154
Appearance
Typically exists as solid at room temperature
Boiling Point
714.6ºC at 760 mmHg
Melting Point
>300ºC
Flash Point
386ºC
LogP
1.923
Hydrogen Bond Donor Count
6
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
1
Heavy Atom Count
23
Complexity
488
Defined Atom Stereocenter Count
0
SMILES
O=C1C2C(=CC(=CC=2O)O)OC(C2C=C(O)C(O)=CC=2)=C1O.O
InChi Key
OKXFBEYCJRMINR-UHFFFAOYSA-N
InChi Code
InChI=1S/C15H10O7.H2O/c16-7-4-10(19)12-11(5-7)22-15(14(21)13(12)20)6-1-2-8(17)9(18)3-6;/h1-5,16-19,21H;1H2
Chemical Name
2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one;hydrate
Synonyms
Quercetin hydrate; 849061-97-8; 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one hydrate; 1001001-36-0; Quercetin hydrate; Quercetin (hydrate); 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one;hydrate; Quercetin monohydrate;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.1226 mL 15.6128 mL 31.2256 mL
5 mM 0.6245 mL 3.1226 mL 6.2451 mL
10 mM 0.3123 mL 1.5613 mL 3.1226 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Status Interventions Conditions Sponsor/Collaborators Start Date Phases
NCT01881919 Completed Dietary Supplement: Control
Dietary Supplement: Treatment
Gout
Diabetes
Hyperuricemia
University of Leeds February 2013 Early Phase 1
Contact Us