yingweiwo

Dovitinib lactate (CHIR-258 lactate; TKI-258 lactate)

Alias: Dovitinib lactate; 692737-80-7; Dovitinib lactate anhydrous; Dovitinib (TKI258) Lactate; 4-Amino-5-fluoro-3-(6-(4-methylpiperazin-1-yl)-1H-benzo[d]imidazol-2-yl)quinolin-2(1H)-one 2-hydroxypropanoate; Dovitinib (lactate); UNII-B82T791274; 4-AMINO-5-FLUORO-3-(6-(4-METHYLPIPERAZIN-1-YL)-1H-BENZO-[D]IMIDAZOL-2-YL)QUINOLIN-2(1H)-ONE 2-HYDROXYPROPANOATE;
Cat No.:V69292 Purity: ≥98%
Dovitinib lactate (TKI258 lactate) is a multi-target tyrosine kinase inhibitor, inhibiting FLT3, c-Kit, FGFR1/3, VEGFR1/2/3 and PDGFRα/β with IC50s of 1, 2, 8/9 respectively.
Dovitinib lactate (CHIR-258 lactate; TKI-258 lactate)
Dovitinib lactate (CHIR-258 lactate; TKI-258 lactate) Chemical Structure CAS No.: 692737-80-7
Product category: FLT3
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
50mg
100mg
Other Sizes

Other Forms of Dovitinib lactate (CHIR-258 lactate; TKI-258 lactate):

  • Dovitinib-d8 (Dovitinib d8)
  • Pomalidomide-C5-Dovitinib
  • Dovitinib-RIBOTAC
  • Dovitinib-RIBOTAC TFA
  • Dovitinib (TKI-258, CHIR-258)
  • Dovitinib Dilactic Acid (TKI258; CHIR258)
  • Dovitinib (TKI258; CHIR-258 ) Lactate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Dovitinib lactate (TKI258 lactate) is a multi-target tyrosine kinase inhibitor, inhibiting FLT3, c-Kit, FGFR1/3, VEGFR1/2/3 and PDGFRα/β with IC50s of 1, 2, 8/9 respectively. , 10/13/8, 27/210 nM.
Biological Activity I Assay Protocols (From Reference)
Targets
FLT3 1 nM (IC50) c-Kit 2 nM (IC50) FGFR1 8 nM (IC50) FGFR3 9 nM (IC50) VEGFR1 1 nM (IC50) VEGFR3 8 nM (IC50) VEGFR2 13 nM (IC50) PDGFRα 27 nM (IC50) PDGFRβ 210 nM (IC50)
ln Vitro
At IC50 values of 25 nM, dovitinib potently suppresses the proliferation of FGF-stimulated B9 cells expressing F384L-FGFR3 as well as WT cells. Even at concentrations as high as 1 μM, B9-MINV cells exhibit resistance to the inhibitory action of dovitinib. Dovitinib has been shown to reduce the growth of KMS11 (FGFR3-Y373C), OPM2 (FGFR3-K650E), and KMS18 (FGFR3-G384D) cells. For KMS11 and OPM2, this means an IC50 of 90 nM and 550 nM, respectively[1]. When dovitinib is administered to SK-HEP1 cells, it causes G2/M cell cycle arrest, inhibits colony formation in soft agar, and blocks bFGF-induced cell migration. Dovitinib phosphorylates FGFR-1, FRS2-α, and ERK1/2 at their basal expression levels and in response to FGF[2].
ln Vivo
In the KMS11-bearing mouse model, dovitinib (10 mg/kg, 30 mg/kg, 60 mg/kg, po) demonstrates a strong antitumor effect. The growth inhibition is 48%, 78.5%, and 94% in the 10 mg/kg, 30 mg/kg, and 60 mg/kg treatment arms, respectively, in comparison to the mice receiving a placebo[1]. In HCC xenograft models, dovitinib exhibits strong anticancer and antimetastatic effects. Six HCC lines exhibit potent inhibition of tumor development by dovitinib. The inactivation of FGFR/PDGFR-β/VEGFR-2 signaling pathways is correlated with the inhibition of angiogenesis development. In addition, dovitinib causes p-histone H2A-X and p27 to be upregulated, retinoblastoma to be dephosphorylated, p-cdk-2 and cyclin B1 to be downregulated, and cellular proliferation to be reduced as well as tumor cell apoptosis to be induced[2].
Enzyme Assay
In a time-resolved fluorescence (TRF) or radioactive format, the inhibitory concentration of 50% (IC50) values for the inhibition of RTKs by dovitinib are calculated, measuring the inhibition of phosphate transfer to a substrate by the corresponding enzyme caused by dovitinib. The assay conditions for the kinase domains of FGFR3, FGFR1, PDGFRβ, and VEGFR1-3 are 50 mM HEPES (N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid), pH 7.0, 2 mM MgCl2, 10 mM MnCl2, 1 mM NaF, 1 mM dithiothreitol (DTT), 1 mg/mL of bovine serum albumin (BSA), 0.25 μM biotinylated peptide substrate (GGGGQDGKDYIVLPI), and 1 to 30 μM adenosine triphosphate (ATP), contingent on the Km corresponding to each enzyme. The concentration of ATP is at or slightly below Km. The pH is increased to 7.5 for the c-KIT and FLT3 reactions, and 0.2 to 8 μM ATP is added along with 0.25 to 1 μM biotinylated peptide substrate (GGLFDDPSYVNVQNL). The phosphorylated peptide is captured on streptavidin-coated microtiter plates containing stop reaction buffer (25 mM EDTA [ethylenediaminetetraacetic acid], 50 mM HEPES, pH 7.5) after reactions are incubated at room temperature for one to four hours. The DELFIA TRF system measures phosphorylated peptide using an antiphosphotyrosine antibody (PT66) labeled with europium. Using XL-Fit data analysis software version 4.1 (IDBS), nonlinear regression is used to calculate the concentration of dovitinib for IC50. At ATP concentrations near the ATP Km, the kinase activity of insulin receptor (InsR), PDGFRα, colony-stimulating factor-1 receptor (CSF-1R), and insulin-like growth factor receptor 1 (IGFR1) is inhibited.[1]
Cell Assay
The 3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium (MTT) dye absorbance represents the cell viability. Densities of 5 × 103 (B9 cells) or 2 × 104 (MM cell lines) cells per well are used for seeding cells in 96-well plates. To culture the cells, different concentrations of Dovitinib are added along with 30 ng/mL aFGF, 100 μg/mL heparin, or 1% IL-6 as needed. Aliquots of 10 μL of drug or DMSO diluted in culture medium are added for each concentration of dovitinib. Drug combination studies involve incubating cells with either 100 nM Dovitinib or 0.5 μM dexamethasone, or both at the same time if necessary. In order to assess the impact of Dovitinib on the growth of MM cells adherent to BMSCs, 104 KMS11 cells are cultured in the presence or absence of Dovitinib on 96-well plates coated with BMSCs. The incubation period for plates is 48–96 hours. 5 × 103 M-NFS-60 cells/well are cultured with serial dilutions of Dovitinib with 10 ng/mL M-CSF and without granulocyte-macrophage colony-stimulating factor (GM-CSF) in order to evaluate the growth of M-CSF-mediated macrophage colony-growth. Using the Cell Titer-Glo Assay, cell viability is assessed after 72 hours. Every experimental condition is run through three times.
Animal Protocol
Xenograft mouse model[1]
The xenograft mouse model was prepared as previously described. Briefly, 6- to 8-week-old female BNX mice obtained from Frederick Cancer Research and Development Centre were inoculated subcutaneously into the right flank with 3 × 107 KMS11 cells in 150 μL IMDM, together with 150 μL Matrigel basement membrane matrix . Treatment was initiated when tumors reached volumes of 200 mm3 at which time mice were randomized to receive 10, 30, or 60 mg/kg Dovitinib (CHIR-258) or 5 mM citrate buffer. Dosing was performed daily for 21 days by gavage. Eight to 10 mice were included in each treatment group. Caliper measurements were performed twice weekly to estimate tumor volume, using the formula: 4π/3 × (width/2)2 × (length/2). One-way analysis of variance was used to compare differences between vehicle- and CHIR-258-treated groups.
21-0208 and SK-HEP1 cells as well as patient-derived HCC models were employed to study the antitumor effect of dovitinib. Changes of biomarkers relevant to FGFR/VEGFR/PDGFR pathways were determined by Western blotting. Microvessel density, apoptosis and cell proliferation were analyzed by immunohistochemistry.
Results: Treatment of SK-HEP1 cells with dovitinib resulted in G2/M cell cycle arrest, inhibition of colony formation in soft agar and blockade of bFGF-induced cell migration. Dovitinib inhibited basal expression and FGF-induced phosphorylation of FGFR-1, FRS2-α and ERK1/2. In vivo, dovitinib potently inhibited tumor growth of six HCC lines. Inhibition of angiogenesis correlated with inactivation of FGFR/PDGFR-β/VEGFR-2 signaling pathways. Dovitinib also caused dephosphorylation of retinoblastoma, upregulation of p-histone H2A-X and p27, and downregulation of p-cdk-2 and cyclin B1, which resulted in a reduction in cellular proliferation and the induction of tumor cell apoptosis. In an orthotopic model, dovitinib potently inhibited primary tumor growth and lung metastasis and significantly prolonged mouse survival.
Conclusions: Dovitinib demonstrated significant antitumor and antimetastatic activities in HCC xenograft models. This study provides a compelling rationale for clinical investigation in patients with advanced HCC.[2]
The pharmacologic activity of Dovitinib (CHIR-258) was characterized by monitoring target modulation as well as by evaluating the antitumor and antiangiogenic effects in human colon xenograft models.
Results: CHIR-258 inhibits vascular endothelial growth factor receptor 1/2, fibroblast growth factor receptor 1/3, and platelet-derived growth factor receptor beta (PDGFRbeta) and shows both antitumor and antiangiogenic activities in vivo. Treatment of KM12L4a human colon cancer cells with CHIR-258 resulted in a dose-dependent inhibition of vascular endothelial growth factor receptor 1 and PDGFRbeta phosphorylation and reduction of phosphorylated extracellular signal-regulated kinase (ERK) levels, indicating modulation of target receptors and downstream signaling. In vivo administration of CHIR-258 resulted in significant tumor growth inhibition and tumor regressions, including large, established tumors (500-1,000 mm(3)). Immunohistochemical analysis showed a reduction of phosphorylated PDGFRbeta and phosphorylated ERK in tumor cells after oral dosing with CHIR-258 compared with control tumors. These changes were accompanied by decreased tumor cell proliferation rate and reduced intratumoral microvessel density. CHIR-258 inhibited the phosphorylation of PDGFRbeta and ERK phosphorylation in tumors within 2 hours following dosing and the inhibitory activity was sustained for >24 hours. Significant antitumor activity was observed with intermittent dosing schedules, indicating a sustained biological activity.
Conclusion: These studies provide evidence that biological activity of CHIR-258 in tumors correlates with efficacy and aids in the identification of potential biomarkers of this multitargeted receptor tyrosine kinase inhibitor. CHIR-258 exhibits properties that make it a promising candidate for clinical development in a variety of solid and hematologic malignancies.[3]
Dissolved in 5 mM citrate buffer; 10, 30, or 60 mg/kg; p.o.
Female BNX mice bearing KMS11 cells
References

[1]. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood. 2005, 105(7), 2941-2948.

[2]. Dovitinib demonstrates antitumor and antimetastatic activities in xenograft models of hepatocellular carcinoma. J Hepatol. 2012, 56(3), 595-601.

Additional Infomation
Dovitinib Lactate is the orally bioavailable lactate salt of a benzimidazole-quinolinone compound with potential antineoplastic activity. Dovitinib strongly binds to fibroblast growth factor receptor 3 (FGFR3) and inhibits its phosphorylation, which may result in the inhibition of tumor cell proliferation and the induction of tumor cell death. In addition, this agent may inhibit other members of the RTK superfamily, including the vascular endothelial growth factor receptor; fibroblast growth factor receptor 1; platelet-derived growth factor receptor type 3; FMS-like tyrosine kinase 3; stem cell factor receptor (c-KIT); and colony-stimulating factor receptor 1; this may result in an additional reduction in cellular proliferation and angiogenesis, and the induction of tumor cell apoptosis. The activation of FGFR3 is associated with cell proliferation and survival in certain cancer cell types.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C24H27FN6O4
Molecular Weight
482.51
Exact Mass
482.207
Elemental Analysis
C, 59.74; H, 5.64; F, 3.94; N, 17.42; O, 13.26
CAS #
692737-80-7
Related CAS #
Dovitinib;405169-16-6;Dovitinib dilactic acid;852433-84-2;Dovitinib lactate hydrate;915769-50-5; 405169-16-6
PubChem CID
135431668
Appearance
White solid powder
LogP
2.58
Hydrogen Bond Donor Count
5
Hydrogen Bond Acceptor Count
9
Rotatable Bond Count
3
Heavy Atom Count
35
Complexity
737
Defined Atom Stereocenter Count
0
InChi Key
ZRHDKBOBHHFLBW-UHFFFAOYSA-N
InChi Code
InChI=1S/C21H21FN6O.C3H6O3/c1-27-7-9-28(10-8-27)12-5-6-14-16(11-12)25-20(24-14)18-19(23)17-13(22)3-2-4-15(17)26-21(18)29;1-2(4)3(5)6/h2-6,11H,7-10H2,1H3,(H,24,25)(H3,23,26,29);2,4H,1H3,(H,5,6)
Chemical Name
4-amino-5-fluoro-3-[6-(4-methylpiperazin-1-yl)-1H-benzimidazol-2-yl]-1H-quinolin-2-one;2-hydroxypropanoic acid
Synonyms
Dovitinib lactate; 692737-80-7; Dovitinib lactate anhydrous; Dovitinib (TKI258) Lactate; 4-Amino-5-fluoro-3-(6-(4-methylpiperazin-1-yl)-1H-benzo[d]imidazol-2-yl)quinolin-2(1H)-one 2-hydroxypropanoate; Dovitinib (lactate); UNII-B82T791274; 4-AMINO-5-FLUORO-3-(6-(4-METHYLPIPERAZIN-1-YL)-1H-BENZO-[D]IMIDAZOL-2-YL)QUINOLIN-2(1H)-ONE 2-HYDROXYPROPANOATE;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ≥ 30 mg/mL (62.17 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0725 mL 10.3625 mL 20.7250 mL
5 mM 0.4145 mL 2.0725 mL 4.1450 mL
10 mM 0.2072 mL 1.0362 mL 2.0725 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT01576380 Completed Drug: TKI258 Linitis Plastica
Neoplasms
Novartis Pharmaceuticals June 2012 Phase 2
NCT01155713 Completed Drug: TKI258 Neoplasm
Cancer
Novartis Pharmaceuticals July 2010 Phase 1
NCT01030055 Completed Drug: TKI258
(dovitinib)
Neoplasm
Cancer
Novartis Pharmaceuticals February 2010 Phase 1
NCT01155713 Completed Drug: TKI258 Advanced Solid Tumors Novartis Pharmaceuticals September 2008 Phase 1
NCT02116803 Completed Drug: dovitinib
Drug: fulvestrant
Solid Tumors Novartis Pharmaceuticals May 28, 2014 Phase 2
Phase 3
Contact Us