yingweiwo

(R)-Pirtobrutinib ((R)-LOXO-305)

Alias: R)-Pirtobrutinib; 2101700-14-3; (R)-5-Amino-3-(4-((5-fluoro-2-methoxybenzamido)methyl)phenyl)-1-(1,1,1-trifluoropropan-2-yl)-1H-pyrazole-4-carboxamide; SCHEMBL19014260; (R)-LOXO-305; FWZAWAUZXYCBKZ-LLVKDONJSA-N; AKOS040754869;
Cat No.:V69668 Purity: ≥98%
(R)-Pirtobrutinib is the less active isomer of Pirtobrutinib.
(R)-Pirtobrutinib ((R)-LOXO-305)
(R)-Pirtobrutinib ((R)-LOXO-305) Chemical Structure CAS No.: 2101700-14-3
Product category: Btk
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes

Other Forms of (R)-Pirtobrutinib ((R)-LOXO-305):

  • Pirtobrutinib
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
(R)-Pirtobrutinib is the less active isomer of Pirtobrutinib. Pirtobrutinib is a selective and non-covalent next-generation BTK inhibitor that can suppress multiple BTK C481 substitution mutations.
Biological Activity I Assay Protocols (From Reference)
Targets
BTK
ln Vitro
LOXO-305 is a highly selective, non-covalent, next generation BTK inhibitor. We previously showed that LOXO-305 potently inhibited both wild-type (WT) BTK and BTK C481S -mediated kinase activity in enzyme and cell-based assays with nanomolar potency, caused regression of BTK-dependent lymphoma mouse xenograft models, and was more than 300-fold selective for BTK over 98% of 370 other kinases tested and showed no significant inhibition of non-kinase off targets at 1 mM (Brandhuber et al. SOHO 2018) [1].
ln Vivo
In addition, ADME and pharmacokinetic experiments in two preclinical species predicted that LOXO-305 will have high human exposure and sustained BTK C481S target coverage in patients at clinically achievable doses[1].
Cell Assay
To assess cellular BTK inhibitor potency, HEK293T cell lines transiently expressing wild-type BTK and BTK C481 substitution mutations were serum starved and incubated with LOXO-305 overnight. Cells were next incubated with serum and orthovanadate for 5 min and the phosphorylated Y223 BTK was analyzed by immunoblot. Bands were quantified and the IC50 values calculated with GraphPad Prism. The equilibrium-binding affinities for targeted BTK inhibitors to BTK enzyme variants were determined by surface plasmon resonance (SPR) using the Biacore T200. Biotinylated BTK variants were immobilized on a docked streptavidin coated sensor chip. Five concentrations of each inhibitor plus blank controls were analyzed. Association/dissociation rate constants were calculated by global fitting of the data to a 1:1 binding interaction model[1].
References

[1]. Loxo-305, a Highly Selective and Non-Covalent Next Generation BTK Inhibitor, Inhibits Diverse BTK C481 Substitution Mutations. Blood, 2019, 134(Supplement_1):4644-4644.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H21F4N5O3
Molecular Weight
479.43
Exact Mass
479.16
Elemental Analysis
C, 55.12; H, 4.42; F, 15.85; N, 14.61; O, 10.01
CAS #
2101700-14-3
Related CAS #
Pirtobrutinib;2101700-15-4
PubChem CID
129269918
Appearance
Typically exists as light yellow to yellow solids at room temperature
LogP
3.3
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
9
Rotatable Bond Count
7
Heavy Atom Count
34
Complexity
719
Defined Atom Stereocenter Count
1
SMILES
C[C@H](C(F)(F)F)N1C(=C(C(=N1)C2=CC=C(C=C2)CNC(=O)C3=C(C=CC(=C3)F)OC)C(=O)N)N
InChi Key
FWZAWAUZXYCBKZ-LLVKDONJSA-N
InChi Code
InChI=1S/C22H21F4N5O3/c1-11(22(24,25)26)31-19(27)17(20(28)32)18(30-31)13-5-3-12(4-6-13)10-29-21(33)15-9-14(23)7-8-16(15)34-2/h3-9,11H,10,27H2,1-2H3,(H2,28,32)(H,29,33)/t11-/m1/s1
Chemical Name
5-amino-3-[4-[[(5-fluoro-2-methoxybenzoyl)amino]methyl]phenyl]-1-[(2R)-1,1,1-trifluoropropan-2-yl]pyrazole-4-carboxamide
Synonyms
R)-Pirtobrutinib; 2101700-14-3; (R)-5-Amino-3-(4-((5-fluoro-2-methoxybenzamido)methyl)phenyl)-1-(1,1,1-trifluoropropan-2-yl)-1H-pyrazole-4-carboxamide; SCHEMBL19014260; (R)-LOXO-305; FWZAWAUZXYCBKZ-LLVKDONJSA-N; AKOS040754869;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 200 mg/mL (417.16 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 5 mg/mL (10.43 mM) (saturation unknown) in 10% DMSO + 40% PEG300 +5% Tween-80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 + to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0858 mL 10.4291 mL 20.8581 mL
5 mM 0.4172 mL 2.0858 mL 4.1716 mL
10 mM 0.2086 mL 1.0429 mL 2.0858 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us