yingweiwo

Dextromilnacipran ((1R,2S)-milnacipran; F2696)

Cat No.:V70023 Purity: ≥98%
Dextromilnacipran (F2696; (1R,2S)-milnacipran), the enantiomer of milnacipran, is a selective serotonin and norepinephrine (5-HT/NE) reuptake inhibitor.
Dextromilnacipran ((1R,2S)-milnacipran; F2696)
Dextromilnacipran ((1R,2S)-milnacipran; F2696) Chemical Structure CAS No.: 96847-55-1
Product category: Serotonin Transporter
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
Other Sizes

Other Forms of Dextromilnacipran ((1R,2S)-milnacipran; F2696):

  • Milnacipran HCl
  • Milnacipran
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Dextromilnacipran (F2696; (1R,2S)-milnacipran), the enantiomer of milnacipran, is a selective serotonin and norepinephrine (5-HT/NE) reuptake inhibitor. Dextromilnacipran is also a human α-adrenergic receptor antagonist (inhibitor) with IC50 of 3.4 μM, found in patent WO2013014263A1.
Biological Activity I Assay Protocols (From Reference)
Targets
IC50: 3.4 μM (alpha-adrenergic receptor)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
The steady-state concentration of levomilnacipran was dose-proportional when administered at a dose ranging from 25 mg to 300 mg (2.5 times the maximum recommended dosage of levomilnacipran) once daily. After daily dosing of 120 mg levomilnacipran, the mean Cmax value was 341 ng/mL, and the mean steady-state AUC value was 5196 ng x h/mL. The relative bioavailability of oral levomilnacipran extended-release capsules was 92% when compared to oral solution. The median time to peak concentration (Tmax) of levomilnacipran ranges from six to eight hours after oral administration. Levomilnacipran concentration was not significantly affected when it was administered with food.
Levomilnacipran and its metabolites are eliminated primarily by renal excretion. Following oral administration of 14C-levomilnacipran solution, approximately 58% of the dose is excreted in urine as unchanged levomilnacipran. N-desethyl levomilnacipran was the major metabolite excreted in the urine, accounting for approximately 18% of the dose. Other identifiable metabolites excreted in the urine were levomilnacipran glucuronide (4%), desethyl levomilnacipran glucuronide (3%), p-hydroxy levomilnacipran glucuronide (1%), and p-hydroxy levomilnacipran (1%).
Levomilnacipran is widely distributed, with an apparent volume of distribution ranging from 387 to 473 L.
Following oral administration, the mean apparent total clearance of levomilnacipran is 21-29 L/h.
Metabolism / Metabolites
Levomilnacipran undergoes desethylation to form desethyl levomilnacipran (or N-desethyl levomilnacipran) and hydroxylation to form p-hydroxy-levomilnacipran, which are pharmacologically inactive. Both oxidative metabolites can undergo further glucuronidation. Desethylation is primarily catalyzed by CYP3A4 with minor contributions by CYP2C8, 2C19, 2D6, and 2J2.
Biological Half-Life
The apparent terminal elimination half-life of extended-release levomilnacipran is approximately 12 hours.
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Levomilnacipran has not been studied in nursing mothers. However, the racemic form of milnacipran has low levels in breastmilk and would not be expected to cause any adverse effects in breastfed infants. Until more data become available, levomilnacipran should be used with caution during breastfeeding, especially while nursing a newborn or preterm infant. Monitor breastfed infants for agitation, irritability, poor feeding and poor weight gain.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Specific published information on levomilnacipran was not found as of the revision date.
An observational study looked at outcomes of 2859 women who took an antidepressant during the 2 years prior to pregnancy. Compared to women who did not take an antidepressant during pregnancy, mothers who took an antidepressant during all 3 trimesters of pregnancy were 37% less likely to be breastfeeding upon hospital discharge. Mothers who took an antidepressant only during the third trimester were 75% less likely to be breastfeeding at discharge. Those who took an antidepressant only during the first and second trimesters did not have a reduced likelihood of breastfeeding at discharge. The antidepressants used by the mothers were not specified.
A retrospective cohort study of hospital electronic medical records from 2001 to 2008 compared women who had been dispensed an antidepressant during late gestation (n = 575) to those who had a psychiatric illness but did not receive an antidepressant (n = 1552) and mothers who did not have a psychiatric diagnosis (n = 30,535). Women who received an antidepressant were 37% less likely to be breastfeeding at discharge than women without a psychiatric diagnosis, but no less likely to be breastfeeding than untreated mothers with a psychiatric diagnosis. None of the mothers were taking milnacipran.
In a study of 80,882 Norwegian mother-infant pairs from 1999 to 2008, new postpartum antidepressant use was reported by 392 women and 201 reported that they continued antidepressants from pregnancy. Compared with the unexposed comparison group, late pregnancy antidepressant use was associated with a 7% reduced likelihood of breastfeeding initiation, but with no effect on breastfeeding duration or exclusivity. Compared with the unexposed comparison group, new or restarted antidepressant use was associated with a 63% reduced likelihood of predominant, and a 51% reduced likelihood of any breastfeeding at 6 months, as well as a 2.6-fold increased risk of abrupt breastfeeding discontinuation. Specific antidepressants were not mentioned.
Protein Binding
Levomilnacipran is 22% bound to plasma proteins over the concentration range of 10 to 1000 ng/mL.
References

[1]. Pierre Sokoloff. Levomilnacipran drug for functional rehabilitation after an acute neurological stroke. WO2013014263A1.

Additional Infomation
Levomilnacipran is a member of acetamides.
Levomilnacipran is a selective serotonin and norepinephrine reuptake inhibitor (SNRI), although it is a more potent inhibitor of norepinephrine reuptake than serotonin reuptake. Levomilnacipran is the more active 1S,2R-enantiomer in the racemate [milnacipran]. Once administered, interconversion between levomilnacipran and its stereoisomer does not occur in humans. First approved by the FDA on July 25, 2013, levomilnacipran is used to treat major depressive disorder in adults. While levomilnacipran was previously investigated and proposed as a potential treatment for stroke in Europe, the EMA decided against this use.
Levomilnacipran is a Serotonin and Norepinephrine Reuptake Inhibitor. The mechanism of action of levomilnacipran is as a Norepinephrine Uptake Inhibitor, and Serotonin Uptake Inhibitor.
The (1S,2R)-isomer of milnacipran that is used for the treatment of MAJOR DEPRESSIVE DISORDER.
See also: Levomilnacipran Hydrochloride (active moiety of); Milnacipran (annotation moved to).
Drug Indication
Levomilnacipran is a serotonin and norepinephrine reuptake inhibitor indicated for the treatment of major depressive disorder (MDD) in adults.
Treatment of stroke
Mechanism of Action
Levomilnacipran is a potent and selective selective serotonin and norepinephrine reuptake inhibitor (SNRI). The exact mechanism of the antidepressant action of levomilnacipran is unknown but is thought to be related to the potentiation of serotonin and norepinephrine in the central nervous system through inhibition of reuptake at serotonin and norepinephrine transporters. Like milnacipran, levomilnacipran is a more potent inhibitor of the norepinephrine transporter than the serotonin transporter: it exhibits over a 15-fold higher selectivity for norepinephrine versus serotonin reuptake inhibition.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H22N2O
Molecular Weight
246.35
Exact Mass
246.173
CAS #
96847-55-1
Related CAS #
Milnacipran hydrochloride;101152-94-7;Milnacipran;92623-85-3
PubChem CID
6917779
Appearance
Colorless to light yellow liquid
Density
1.077
Boiling Point
393ºC at 760 mmHg
LogP
2.471
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
5
Heavy Atom Count
18
Complexity
295
Defined Atom Stereocenter Count
2
SMILES
CCN(CC)C(=O)[C@@]1(C[C@@H]1CN)C2=CC=CC=C2
InChi Key
GJJFMKBJSRMPLA-HIFRSBDPSA-N
InChi Code
InChI=1S/C15H22N2O/c1-3-17(4-2)14(18)15(10-13(15)11-16)12-8-6-5-7-9-12/h5-9,13H,3-4,10-11,16H2,1-2H3/t13-,15+/m1/s1
Chemical Name
(1R,2S)-2-(aminomethyl)-N,N-diethyl-1-phenylcyclopropane-1-carboxamide
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.0593 mL 20.2963 mL 40.5927 mL
5 mM 0.8119 mL 4.0593 mL 8.1185 mL
10 mM 0.4059 mL 2.0296 mL 4.0593 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us