yingweiwo

BIM-23056

Alias: BIM 23056; D-Alaninamide, D-phenylalanyl-L-phenylalanyl-L-tyrosyl-D-tryptophyl-L-lysyl-L-valyl-L-phenylalanyl-3-(2-naphthalenyl)-; (2S)-6-Amino-N-[(2S)-1-[[(2S)-1-[[(2R)-1-amino-3-naphthalen-2-yl-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]hexanamide; FFYWKVFA; D-Phe-Phe-Tyr-D-Trp-Lys-Val-Phe-D-Nal-NH2; CHEMBL410596; SCHEMBL12912367;
Cat No.:V70052 Purity: ≥98%
BIM 23056 is a linear octapeptide that is a potent sst3 and sst5 somatostatin receptor antagonist (inhibitor) with Kis of 10.8 and 5.7, respectively.
BIM-23056
BIM-23056 Chemical Structure CAS No.: 150155-61-6
Product category: Somatostatin Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
Other Sizes

Other Forms of BIM-23056:

  • BIM-23056 TFA
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
BIM 23056 is a linear octapeptide that is a potent sst3 and sst5 somatostatin receptor antagonist (inhibitor) with Kis of 10.8 and 5.7, respectively.
Biological Activity I Assay Protocols (From Reference)
Targets
SSTR3/5
ln Vitro
For sst1, sst4, and sst2, BIM 23056 has Ki values of 142, 16.6, and >1000, respectively[1].
Enzyme Assay
1. Somatostatin (SRIF) causes a concentration-dependent inhibition of neurotransmission in guinea-pig ileum and vas deferens as well as negative inotropy in guinea-pig isolated right atrium. The SRIF receptors mediating these effects have now been further characterized by use of the peptides BIM-23027, BIM-23056  and L-362855, reported as selective for the recombinant SRIF receptor types, sst2, sst3 and sst5, respectively. 2. BIM-23027 was a highly potent agonist at causing an inhibition of neurotransmission in the guinea-pig ileum (EC50 value 1.9 nM), being about 3 times more potent than SRIF (EC50 value 6.8 nM). In contrast, in both guinea-pig vas deferens and right atrial preparations, BIM-23027 was a relatively weak agonist being at least 30-100 times weaker than SRIF. In guinea-pig atria, BIM-23027 (3 microM) antagonized the negative inotropic action of SRIF28 (apparent pKB = 5.9 +/- 0.1) but had no effect on the negative inotropic action of cyclohexyladenosine. 3. The inhibitory effect of BIM-23027 in the guinea-pig ileum was readily desensitized. Prior exposure to BIM-23027 (0.3 microM) markedly attenuated the inhibitory effect of SRIF but had no effect on the inhibitory action of clonidine suggesting that BIM-23027 and SRIF act via a common receptor mechanism. 4. L-362855 caused a concentration-dependent inhibition of neurotransmission in both the guinea-pig ileum and vas deferens as well as causing negative inotropy in the guinea-pig atrium but was at least 30-100 times weaker than SRIF. In guinea-pig isolated atria, L-362855 (3 microM) did not antagonize the negative inotropic action of SRIF28. 5. BIM-23056  in concentrations up to 1 microM was inactive as an agonist in guinea-pig isolated ileum, vas deferens and atrium and did not antagonize the inhibitory actions of SRIF in any of these preparations.6. The results from this study support our previous contention that the sst2 receptor type mediates inhibition of neurotransmission by SRIF in the guinea-pig ileum. The SRIF receptor type mediating inhibition of neurotransmission in the guinea-pig vas deferens appears different, but similar, to that mediating negative inotropy in the atrium. However the characteristics of these latter receptors appear different from that of the recombinant sst2, sst3 and sst5 receptors for SRIF described for rat and man.[2]
References

[1]. Subtype selectivity of peptide analogs for all five cloned human somatostatin receptors (hsstr 1-5). Endocrinology. 1994 Dec;135(6):2814-7.

[2]. Further evidence from functional studies for somatostatin receptor heterogeneity in guinea-pig isolated ileum, vas deferens and right atrium. Br J Pharmacol. 1995 Jul;115(6):975-80.

Additional Infomation
Five different receptor ligands were investigated in this study, BIM-23027 (sst2 receptor agonist; Bell & Reisine, 1993), CYN-154806 (sst2 receptor antagonist; Bass et al., 1996), NNC 26-9100 (sst4 receptor agonist; Ankersen et al., 1998), L-362,855 (sst2,5 receptor agonist; Williams et al., 1997) and BIM-23056 (sst5 receptor antagonist; Wilkinson et al., 1997); these were all applied via the microdialysis probes (retrodialysis). Dialysate samples were collected initially for 90 min to establish baseline values. All of the compounds were dissolved in Krebs-Ringer (containing neostigmine) and retrodialysed for a 15 min period 90 min after the commencement of sampling and once again 135 min later. Between challenges the perfusing solution was changed back to Krebs-Ringer. In experiments using NNC 26-9100, L-362,855 and BIM-23056, three concentrations of each compound were tested (1, 50 and 1000 nm).Br J Pharmacol. 1999 Nov; 128(6): 1346–1352.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C71H81N11O9
Molecular Weight
1232.47
Exact Mass
1231.62
CAS #
150155-61-6
Related CAS #
BIM-23056 TFA;1426173-61-6
PubChem CID
16133799
Appearance
White to off-white solid powder
LogP
9.611
Hydrogen Bond Donor Count
12
Hydrogen Bond Acceptor Count
11
Rotatable Bond Count
32
Heavy Atom Count
91
Complexity
2320
Defined Atom Stereocenter Count
8
SMILES
CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@H](CC2=CC3=CC=CC=C3C=C2)C(=O)N)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC4=CNC5=CC=CC=C54)NC(=O)[C@H](CC6=CC=C(C=C6)O)NC(=O)[C@H](CC7=CC=CC=C7)NC(=O)[C@@H](CC8=CC=CC=C8)N
InChi Key
VPTPBEUWKCLZGU-OOSWLFMASA-N
InChi Code
InChI=1S/C71H81N11O9/c1-44(2)63(71(91)81-61(39-47-22-10-5-11-23-47)67(87)77-58(64(74)84)41-49-29-32-50-24-12-13-25-51(50)36-49)82-66(86)57(28-16-17-35-72)76-70(90)62(42-52-43-75-56-27-15-14-26-54(52)56)80-69(89)60(40-48-30-33-53(83)34-31-48)79-68(88)59(38-46-20-8-4-9-21-46)78-65(85)55(73)37-45-18-6-3-7-19-45/h3-15,18-27,29-34,36,43-44,55,57-63,75,83H,16-17,28,35,37-42,72-73H2,1-2H3,(H2,74,84)(H,76,90)(H,77,87)(H,78,85)(H,79,88)(H,80,89)(H,81,91)(H,82,86)/t55-,57+,58-,59+,60+,61+,62-,63+/m1/s1
Chemical Name
(2S)-6-amino-N-[(2S)-1-[[(2S)-1-[[(2R)-1-amino-3-naphthalen-2-yl-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]hexanamide
Synonyms
BIM 23056; D-Alaninamide, D-phenylalanyl-L-phenylalanyl-L-tyrosyl-D-tryptophyl-L-lysyl-L-valyl-L-phenylalanyl-3-(2-naphthalenyl)-; (2S)-6-Amino-N-[(2S)-1-[[(2S)-1-[[(2R)-1-amino-3-naphthalen-2-yl-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]hexanamide; FFYWKVFA; D-Phe-Phe-Tyr-D-Trp-Lys-Val-Phe-D-Nal-NH2; CHEMBL410596; SCHEMBL12912367;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 100 mg/mL (81.14 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (2.03 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (2.03 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.8114 mL 4.0569 mL 8.1138 mL
5 mM 0.1623 mL 0.8114 mL 1.6228 mL
10 mM 0.0811 mL 0.4057 mL 0.8114 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us