Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
IC50: 2.5 μM (hGPR119) (in COS-7 cells)[1]
|
---|---|
ln Vitro |
2-oleoyl glycerol (2OG) and other 2-monoacylglycerols increased intracellular concentrations of cAMP in GPR119-expressing COS-7 cells (2OG EC(50) = 2.5 μm). Administration of 2OG to humans significantly increased plasma GLP-1 (0-25 min) when compared to the two controls, oleic acid and vehicle. Plasma levels of glucose-dependent insulinotropic polypeptide also increased.
Conclusion: 2OG and other 2-monoacylglycerols formed during fat digestion can activate GPR119 and cause incretin release from the human intestine. This mechanism is likely to contribute to the known stimulatory effect of dietary fat on incretin secretion, and it indicates that GPR119 is a fat sensor[1].
|
ln Vivo |
The effect of a jejunal bolus of 2 g 2OG on plasma levels of GLP-1 was evaluated in eight healthy human volunteers. The effect of 2OG was compared to an equimolar amount of oleic acid, a degradation product from 2OG, and the vehicle, glycerol. Digestion of 5 ml olive oil with pancreatic lipase will result in formation of approximately 2 g 2OG and 3.2 g oleic acid[1].
|
Enzyme Assay |
The pharmacology of monoacylglycerol lipase (MAGL) is not well understood. In consequence, the abilities of a series of analogues of 2-arachidonoylglycerol (2-AG) to inhibit cytosolic 2-oleoylglycerol and membrane-bound anandamide hydolysis by MAGL and fatty acid amide hydrolase (FAAH), respectively, have been investigated. 2-AG and its 1-regioisomer (1-AG) interacted with MAGL with similar affinities (IC(50) values 13 and 17 mum, respectively). Shorter homologues of 2-AG (2-linoleoylglycerol and 2-oleoylglycerol) had affinities for MAGL similar to 2-AG. This pattern was also seen when the arachidonoyl side chain of arachidonoyl trifluoromethylketone was replaced by an oleoyl side chain. Arachidonoyl serinol (IC(50) value 73 microM) was a weaker inhibitor of MAGL than 2-AG. The IC(50) values of noladin ether towards MAGL and FAAH were 36 and 3 microM, respectively. Arachidonoyl glycine interacted with FAAH (IC(50) value 4.9 microM) but only weakly interacted with MAGL (IC(50) value >100 microM). alpha-Methyl-1-AG had similar potencies towards MAGL and FAAH (IC(50) values of 11 and 33 microM, respectively). O-2203 (1-(20-cyano-16,16-dimethyl-eicosa-5,8,11,14-tetraenoyl) glycerol) and O-2204 (2-(20-hydroxy-16,16-dimethyl-eicosa-5,8,11,14-tetraenoyl) glycerol) were slightly less potent, but again affected both enzymes equally. alpha-Methyl-1-AG, O-2203 and O-2204 interacted only weakly with cannabinoid CB(1) receptors expressed in CHO cells (K(i) values 1.8, 3.7 and 3.2 microM, respectively, compared with 0.24 microM for 1-AG) and showed no evidence of central cannabinoid receptor activation in vivo at doses up to 30 mg kg(-1) i.v. It is concluded that compounds like alpha-Methyl-1-AG, O-2203 and O-2204 may be useful as leads for the discovery of selective MAGL inhibitors that lack direct effects upon cannabinoid receptors[2].
|
Cell Assay |
Agonist activity for various lipids was tested on transiently expressed human GPR119 in COS-7 cells.
|
References | |
Additional Infomation |
2-oleoylglycerol is a 2-monoglyceride where the acyl group is (9Z)-octadecenoyl. It is a monooleoylglycerol and a 2-acylglycerol 18:1. It is functionally related to an oleic acid.
2-Monoolein has been reported in Medicago sativa, Sciadopitys verticillata, and Trypanosoma brucei with data available. |
Molecular Formula |
C21H40O4
|
---|---|
Molecular Weight |
356.55
|
Exact Mass |
356.293
|
CAS # |
3443-84-3
|
PubChem CID |
5319879
|
Appearance |
Colorless to light yellow liquid
|
Density |
0.969 g/cm3
|
Boiling Point |
485.4ºC at 760mmHg
|
Flash Point |
113ºC
|
Index of Refraction |
1.478
|
LogP |
4.92
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
4
|
Rotatable Bond Count |
19
|
Heavy Atom Count |
25
|
Complexity |
311
|
Defined Atom Stereocenter Count |
0
|
SMILES |
CCCCCCCC/C=C\CCCCCCCC(=O)OC(CO)CO
|
InChi Key |
UPWGQKDVAURUGE-KTKRTIGZSA-N
|
InChi Code |
InChI=1S/C21H40O4/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-21(24)25-20(18-22)19-23/h9-10,20,22-23H,2-8,11-19H2,1H3/b10-9-
|
Chemical Name |
1,3-dihydroxypropan-2-yl (Z)-octadec-9-enoate
|
Synonyms |
2-Monoolein; 2-Oleoylglycerol; 3443-84-3; 2-Monooleoylglycerol; 2-oleoyl-glycerol; 2-Glyceryl monooleate; Glyceryl 2-oleate; Glycerol 2-monooleate;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.8047 mL | 14.0233 mL | 28.0466 mL | |
5 mM | 0.5609 mL | 2.8047 mL | 5.6093 mL | |
10 mM | 0.2805 mL | 1.4023 mL | 2.8047 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.