yingweiwo

(S)-(-)-HA 966 ((-)-HA 966)

Alias: 111821-58-0; (S)-(-)-HA-966; (S)-(-)-3-Amino-1-hydroxypyrrolidin-2-one; (3S)-3-amino-1-hydroxypyrrolidin-2-one; (S)-(-)-HA 966; HA-966, (S)-; (-)-HA 966; 2-Pyrrolidinone, 3-amino-1-hydroxy-, (S)-;
Cat No.:V70428 Purity: ≥98%
(S)-(-)-HA 966 ((-)-HA 966) is a bioactive molecule similar to γ-hydroxybutyrate and a weakly active NMDA receptor antagonist.
(S)-(-)-HA 966 ((-)-HA 966)
(S)-(-)-HA 966 ((-)-HA 966) Chemical Structure CAS No.: 111821-58-0
Product category: iGluR
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
(S)-(-)-HA 966 ((-)-HA 966) is a bioactive molecule similar to γ-hydroxybutyrate and a weakly active NMDA receptor antagonist. (S)-(-)-HA 966 has a muscle relaxing effect, which can prevent the increase in cortisol dopamine metabolism, inhibit stress, fear and other behaviors.
Biological Activity I Assay Protocols (From Reference)
Targets
NMDA Receptor
ln Vitro
In contrast to (-)-HA-966 (IC50=708 μM), (+)-HA-966 suppresses glycine-potentiated NMDA responses on cultured cortical neurons with an IC50=13 μM[2].
ln Vivo
(S)-(-)-HA 966 ((-)-HA 966; 3 and 5 mg/kg; ip) inhibits the medial prefrontal cortex and nucleus accumbens from using dopamine when under restriction. Defecation and immobility are two fear-induced responses that are suppressed by (S)-(-)-HA 966[1]. (S)-(-)-HA 966 (3 mg/kg; ip) inhibits the acute motor response that cocaine elicits without changing the process of locomotor sensitization[1]. Although it causes drowsiness, (S)-(-)-HA 966 (5 mg/kg; ip) inhibits acute cocaine-induced locomotion[1].
Enzyme Assay
The antagonist effect of (+/-)-3-amino-1-hydroxypyrrolid-2-one (HA-966) at the N-methyl-D-aspartate (NMDA) receptor occurs through a selective interaction with the glycine modulatory site within the receptor complex. When the enantiomers of (+/-)-HA-966 were resolved, the (R)-(+)-enantiomer was found to be a selective glycine/NMDA receptor antagonist, a property that accounts for its anticonvulsant activity in vivo. In contrast, the (S)-(-)-enantiomer was only weakly active as an NMDA-receptor antagonist, but nevertheless it possessed a marked sedative and muscle relaxant action in vivo. In radioligand binding experiments, (+)-HA-966 inhibited strychnine-insensitive [3H]glycine binding to rat cerebral cortex synaptic membranes with an IC50 of 12.5 microM, whereas (-)-HA-966 had an IC50 value of 339 microM. In electrophysiological experiments, (+)-HA-966 selectively antagonized NMDA receptor responses in rat cortical slices, whereas the (-)-enantiomer was much weaker. On cultured cortical neurones (+)-HA-966 inhibited glycine-potentiated NMDA responses with an IC50 = 13 microM compared with (-)-HA-966, which has an IC50 = 708 microM. In agreement with findings with racemic HA-966, even high concentrations of (+)-HA-966 did not completely inhibit NMDA responses, suggesting that (+)-HA-966 is a low-efficacy partial agonist. (+)-HA-966 produced parallel shifts to the right of the glycine concentration curve for potentiation of NMDA responses, resulting in an estimated pKb = 5.6. In mice, (+)-HA-966 antagonized sound and N-methyl-DL-aspartic acid (NMDLA)-induced seizures with ED50 values of 52.6 mg/kg of body weight (i.p.) and 900 mg/kg (i.v.), respectively. The coadministration of D-serine dose-dependently (10-100 micrograms into the cerebral ventricles per mouse) antagonized the anticonvulsant effect of a submaximal dose of (+)-HA-966 (100 micrograms administered directly into the cerebral ventricles) against NMDLA-induced seizures. The sedative/ataxic effect of racemic HA-966 was mainly attributable to the (-)-enantiomer, which was greater than 25-fold more potent than the (+)-enantiomer. It is suggested that, as in the case of the sedative gamma-butyrolactone, disruption of striatal dopaminergic mechanisms may be responsible for this action[2].
Animal Protocol
This report investigates the effect of the negative enantiomer of 1-hydroxy-3-aminopyrrolidone-2 (HA-966) on behavioral and biochemical changes elicited by pharmacological or experimental paradigms which activate mesocorticolimbic dopaminergic neurotransmission. Several paradigms were used, including cocaine sensitization and two stressors: restraint for 30 min and an aversive conditioning model. (S)-(-)-HA-966 (3 and 5 mg/kg i.p.) prevented restraint stress-induced dopamine utilization in both the medial prefrontal cortex and nucleus accumbens, in contrast to the positive enantiomer. Conditioned fear increased dopamine metabolism in both the core and shell subdivisions of the nucleus accumbens, an effect blocked by (S)-(-)-HA-966. The conditioned stress-induced increase in dopamine metabolism in the medial prefrontal cortex was also blocked by (S)-(-)-HA-966. In addition, (S)-(-)-HA-966 suppressed fear-induced behaviors: immobility and defecation. In other studies, (S)-(-)-HA-966 (3 mg/kg i.p.) prevented locomotor sensitization without altering the acute motoric response elicited by cocaine. The highest dose of (S)-(-)-HA-966 (5 mg/kg i.p.) blocked acute cocaine-induced locomotion but resulted in sedation. In addition, the highest dose of (S)-(-)-HA-966 tested suppressed weight gain in control rats, unlike its enantiomer, (R)-(+)-HA-966. Because (S)-(-)-HA-966 has been proposed to act at the gamma-aminobutyric acid (GABA)B receptor, we examined the ability of (S)-(-) and (R)-(+)-HA-966 to displace [3H]-(-)-baclofen from cortical membranes to assess GABAB receptor binding. Neither enantiomer significantly altered [3H]-(-)-baclofen binding at relevant concentrations, indicating the actions of (S)-(-)-HA-966 reported here are the results of a mechanism apparently independent of the baclofen binding site on the GABAB receptor[1].
References

[1]. (S)-(-)-HA-966, a gamma-hydroxybutyrate-like agent, prevents enhanced mesocorticolimbic dopamine metabolism and behavioral correlates of restraint stress, conditioned fear and cocaine sensitization. J Pharmacol Exp Ther. 1997 Nov;283(2):712-21.

[2]. Enantiomers of HA-966 (3-amino-1-hydroxypyrrolid-2-one) exhibit distinct central nervous system effects: (+)-HA-966 is a selective glycine/N-methyl-D-aspartate receptor antagonist, but (-)-HA-966 is a potent gamma-butyrolactone-like sedative. Proc Natl Acad Sci U S A. 1990 Jan;87(1):347-51.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C4H8N2O2
Molecular Weight
117.12646
Exact Mass
116.059
CAS #
111821-58-0
PubChem CID
183351
Appearance
Typically exists as Off-white to light yellow solids at room temperature
Density
1.436 g/cm3
Boiling Point
258.6ºC at 760 mmHg
Flash Point
110.2ºC
LogP
-1.5
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
0
Heavy Atom Count
8
Complexity
115
Defined Atom Stereocenter Count
1
SMILES
[NH3+][C@H]1CCN(O)C1=O
InChi Key
HCKUBNLZMKAEIN-VKHMYHEASA-N
InChi Code
InChI=1S/C4H8N2O2/c5-3-1-2-6(8)4(3)7/h3,8H,1-2,5H2/t3-/m0/s1
Chemical Name
(3S)-3-amino-1-hydroxypyrrolidin-2-one
Synonyms
111821-58-0; (S)-(-)-HA-966; (S)-(-)-3-Amino-1-hydroxypyrrolidin-2-one; (3S)-3-amino-1-hydroxypyrrolidin-2-one; (S)-(-)-HA 966; HA-966, (S)-; (-)-HA 966; 2-Pyrrolidinone, 3-amino-1-hydroxy-, (S)-;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 8.5375 mL 42.6876 mL 85.3752 mL
5 mM 1.7075 mL 8.5375 mL 17.0750 mL
10 mM 0.8538 mL 4.2688 mL 8.5375 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us