Size | Price | |
---|---|---|
100mg | ||
Other Sizes |
Targets |
Human Endogenous Metabolite
|
---|---|
ln Vitro |
The solution conformation of digalacturonic acid and its sodium salt have been analyzed using nuclear magnetic resonance data and molecular mechanics calculations. The flexibility around the glycosidic linkage was characterized by calculation of the relaxed (phi, psi) potential surfaces for the isolated molecule, and also for dimethyl sulfoxide and aqueous solutions using the CHARMM and SOLVOL programs. The one-bond and three-bond proton-carbon couplings were measured and H-1'-H-4 distances were estimated from NOESY experiments. The calculated potential surfaces were used to determine theoretical ensemble averages of NMR data. The agreement between the experimental and theoretical data is very satisfactory. The calculations show a strong effect of solvent on the solution behavior of both compounds. The vacuum lowest energy conformer of digalacturonic acid is stabilized by solvation, while for sodium digalacturonate the solvent induces a conformational change. An extrapolation of the stable conformers to polysaccharide chains implies that poly(galacturonic acid) occurs in solution as a three-fold helix and sodium poly(galacturonate) as a two-fold helix [1].
|
Enzyme Assay |
Proteinase K, a subtilisin-like fungal protease, was crystallized from a cocktail of small molecules containing digalacturonic acid (DGA). The crystal structure was determined to 1.32 A resolution and refined to an R factor of 0.158. The final model contained, beside the protein, two calcium ions, 379 water molecules, a molecule of DGA and a partially occupied HEPES molecule. The DGA molecule has one sugar moiety disposed exactly on a crystallographic twofold axis; the second ring was not observed. The DGA molecule is bound to two protein molecules across the twofold axis through hydrogen-bonding networks involving Ser150 and water molecules. One of the calcium-ion sites has not been reported previously. This study further illustrates the involvement of small molecules in the crystallization of macromolecules through their ability to form intermolecular lattice interactions [2].
|
References | |
Additional Infomation |
Alpha-D-GalpA-(1->4)-D-GalpA is a digalacturonic acid in which an alpha-D-galactopyranuronic acid unit is joined to a D-galactopyranuronic acid unit via an alpha-(1->4)-linkage. It is a conjugate acid of an alpha-D-galacturonosyl-(1->4)-D-galacturonate(2-).
Digalacturonic acid has been reported in Phaseolus vulgaris with data available. |
Molecular Formula |
C12H18O13
|
---|---|
Molecular Weight |
370.26
|
Exact Mass |
370.075
|
CAS # |
5894-59-7
|
PubChem CID |
439694
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.97 g/cm3
|
Boiling Point |
793.8ºC at 760 mmHg
|
Flash Point |
296.6ºC
|
Index of Refraction |
1.682
|
LogP |
-4.2
|
Hydrogen Bond Donor Count |
8
|
Hydrogen Bond Acceptor Count |
13
|
Rotatable Bond Count |
4
|
Heavy Atom Count |
25
|
Complexity |
511
|
Defined Atom Stereocenter Count |
9
|
SMILES |
[C@@H]1([C@H]([C@H](O[C@@H]([C@@H]1O)O[C@@H]2[C@@H]([C@H](C(O[C@@H]2C(=O)O)O)O)O)C(=O)O)O)O
|
InChi Key |
IGSYEZFZPOZFNC-LKIWRGPLSA-N
|
InChi Code |
InChI=1S/C12H18O13/c13-1-2(14)7(9(18)19)25-12(5(1)17)24-6-3(15)4(16)11(22)23-8(6)10(20)21/h1-8,11-17,22H,(H,18,19)(H,20,21)/t1-,2+,3+,4+,5+,6+,7-,8-,11?,12-/m0/s1
|
Chemical Name |
(2S,3R,4S,5R,6S)-6-[(2S,3R,4R,5R)-2-carboxy-4,5,6-trihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid
|
Synonyms |
Digalacturonic acid; 5894-59-7; Digalacturonate; C02273; D-4-O-alpha-D-Galactopyranuronosyl-galacturonic Acid;; AC1L97UT; alpha-D-galacturonosyl-(1->4)-D-galacturonate; SureCN13589989;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.7008 mL | 13.5040 mL | 27.0080 mL | |
5 mM | 0.5402 mL | 2.7008 mL | 5.4016 mL | |
10 mM | 0.2701 mL | 1.3504 mL | 2.7008 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.