Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
Other Sizes |
|
Targets |
β adrenergic receptor
|
---|---|
ln Vitro |
Bufuralol (Ro 3-4787) hydrochloride, which is specific to CYP2D6 substrates and has an aromatic ring and basic nitrogen, is frequently used to assess CYP2D6 activity [3].
|
ln Vivo |
The metabolism of bufuralol (Ro 3-4787) hydrochloride mediated by NADPH displays biphasic kinetics that are less efficient than those seen in monkeys' guts and in monkeys when cumene hydroperoxide (CuOOH) is present, which is consistent with that in the liver. The findings of the observations agree with [4].
|
Enzyme Assay |
Cytochromea P450 2D6 (CYP2D6) is a highly polymorphic enzyme that metabolizes a large number of therapeutic drugs. To date, more than 100 CYP2D6 allelic variants have been reported. Among these variants, we recently identified 22 novel variants in the Chinese population. The aim of this study was to functionally characterize the enzymatic activity of these variants in vitro. A baculovirus-mediated expression system was used to express wild-type CYP2D6.1 and other variants (CYP2D6.2, CYP2D6.10 and 22 novel CYP2D6 variants) at high levels. Then, the insect microsomes containing expressed CYP2D6 proteins were incubated with Bufuralol or dextromethorphan at 37°C for 20 or 25 min., respectively. After termination, the metabolites were extracted and used for the detection with high-performance liquid chromatography. Among the 24 CYP2D6 variants tested, two variants (CYP2D6.92 and CYP2D6.96) were found to be catalytically inactive. The remaining 22 variants exhibited significantly decreased intrinsic clearance values for Bufuralol 1'-hydroxylation and 20 variants showed significantly lower intrinsic clearance values for dextromethorphan O-demethylation than those of the wild-type CYP2D6.1. Our in vitro results suggest that most of the variants exhibit significantly reduced catalytic activities compared with the wild-type, and these data provide valuable information for personalized medicine in Chinese and other Asian populations.[1]
Metabolic phenotype can be affected by multiple factors, including allelic variation and interactions with inhibitors. Human CYP2D6 is responsible for approximately 20% of cytochrome P450-mediated drug metabolism but consists of more than 100 known variants; several variants are commonly found in the population, whereas others are quite rare. Four CYP2D6 allelic variants-three with a series of mutations distal to the active site (*34, *17-2, *17-3) and one ultra-metabolizer with mutations near the active site (*53), along with reference *1 and an active site mutant of *1 (Thr309Ala)-were expressed, purified, and studied for interactions with the typical substrates dextromethorphan and Bufuralol and the inactivator SCH 66712. We found that *34, *17-2, and *17-3 displayed reduced enzyme activity and NADPH coupling while producing the same metabolites as *1, suggesting a possible role for Arg296 in NADPH coupling. A higher-activity variant, *53, displayed similar NADPH coupling to *1 but was less susceptible to inactivation by SCH 66712. The Thr309Ala mutant showed similar activity to that of *1 but with greatly reduced NADPH coupling. Overall, these results suggest that kinetic and metabolic analysis of individual CYP2D6 variants is required to understand their possible contributions to variable drug response and the complexity of personalized medicine.[2] |
Animal Protocol |
Observations were made in eight subjects who exercised before and at 1, 2, 4, 6, 8 and 24 h after the double-blind oral administration of placebo, bufuralol 7.5, 15, 30, 60 and 120 mg and propranolol 40 and 160 mg. The exercise heart rate remained constant after placebo. Bufuralol 7.5 mg and propranolol 40 mg reduced exercise heart rate up to 6 and 8 h respectively after dosing but bufuralol 15, 30, 60 and 120 mg and propranolol 160 mg were still active at 24 h. The lowest exercise heart rate occurred at 2 h after all active treatments. Bufuralol 60 and 120 mg produced similar reduction in exercise tachycardia as propranolol 40 mg but less than propranolol 160 mg. Plasma levels of bufuralol and its two major metabolites were measured. The peak plasma concentrations of bufuralol occurred at 1.5 h after 7.5 mg and at 2 h after the other doses of bufuralol. In six subjects the plasma elimination half-life of bufuralol was 2.61 +/- 0.18 h and in the other three subjects 4.85 +/- 0.35 h. There was a corresponding longer time to peak concentration and plasma elimination half-life of the two metabolites in these three subjects. These findings show that bufuralol is a potent beta-adrenoceptor antagonist with partial agonist activity. It has a long duration of action and there is bimodal metabolism of the drug in man
|
ADME/Pharmacokinetics |
Metabolism / Metabolites:
Bufuralol has known human metabolites that include 1'2'-Ethenylbufuralol, 4-Hydroxybufuralol, and 6-Hydroxubufuralol.
Observations were made in eight subjects who exercised before and at 1, 2, 4, 6, 8 and 24 h after the double-blind oral administration of placebo, bufuralol 7.5, 15, 30, 60 and 120 mg and propranolol 40 and 160 mg. The exercise heart rate remained constant after placebo. Bufuralol 7.5 mg and propranolol 40 mg reduced exercise heart rate up to 6 and 8 h respectively after dosing but bufuralol 15, 30, 60 and 120 mg and propranolol 160 mg were still active at 24 h. The lowest exercise heart rate occurred at 2 h after all active treatments. Bufuralol 60 and 120 mg produced similar reduction in exercise tachycardia as propranolol 40 mg but less than propranolol 160 mg. Plasma levels of bufuralol and its two major metabolites were measured. The peak plasma concentrations of bufuralol occurred at 1.5 h after 7.5 mg and at 2 h after the other doses of bufuralol. In six subjects the plasma elimination half-life of bufuralol was 2.61 +/- 0.18 h and in the other three subjects 4.85 +/- 0.35 h. There was a corresponding longer time to peak concentration and plasma elimination half-life of the two metabolites in these three subjects. These findings show that bufuralol is a potent beta-adrenoceptor antagonist with partial agonist activity. It has a long duration of action and there is bimodal metabolism of the drug in man.[1] |
Toxicity/Toxicokinetics |
rat LD50 oral 750 mg/kg BEHAVIORAL: CONVULSIONS OR EFFECT ON SEIZURE THRESHOLD; BEHAVIORAL: ATAXIA; LUNGS, THORAX, OR RESPIRATION: RESPIRATORY DEPRESSION Arzneimittel-Forschung. Drug Research., 27(1410), 1977 [PMID:20114]
rat LD50 subcutaneous 1400 mg/kg BEHAVIORAL: CONVULSIONS OR EFFECT ON SEIZURE THRESHOLD; BEHAVIORAL: ATAXIA; LUNGS, THORAX, OR RESPIRATION: RESPIRATORY DEPRESSION Arzneimittel-Forschung. Drug Research., 27(1410), 1977 [PMID:20114] mouse LD50 oral 177 mg/kg BEHAVIORAL: CONVULSIONS OR EFFECT ON SEIZURE THRESHOLD; BEHAVIORAL: ATAXIA; LUNGS, THORAX, OR RESPIRATION: RESPIRATORY DEPRESSION Arzneimittel-Forschung. Drug Research., 27(1410), 1977 [PMID:20114] mouse LD50 intraperitoneal 88 mg/kg BEHAVIORAL: CONVULSIONS OR EFFECT ON SEIZURE THRESHOLD; BEHAVIORAL: ATAXIA; LUNGS, THORAX, OR RESPIRATION: RESPIRATORY DEPRESSION Arzneimittel-Forschung. Drug Research., 27(1410), 1977 [PMID:20114] mouse LD50 intravenous 29700 ug/kg BEHAVIORAL: CONVULSIONS OR EFFECT ON SEIZURE THRESHOLD; BEHAVIORAL: ATAXIA; LUNGS, THORAX, OR RESPIRATION: RESPIRATORY DEPRESSION Arzneimittel-Forschung. Drug Research., 27(1410), 1977 [PMID:20114] |
References |
|
Molecular Formula |
C16H24CLNO2
|
---|---|
Molecular Weight |
297.82
|
Exact Mass |
297.15
|
Elemental Analysis |
C, 64.53; H, 8.12; Cl, 11.90; N, 4.70; O, 10.74
|
CAS # |
60398-91-6
|
Related CAS # |
Bufuralol;54340-62-4; 59652-29-8 (HCl); 60398-91-6 (racemic HCl)
|
PubChem CID |
151573
|
Appearance |
Off-white to light brown solid powder
|
Boiling Point |
393.2ºC at 760 mmHg
|
Melting Point |
143-146ºC
|
Flash Point |
191.6ºC
|
LogP |
4.609
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
3
|
Rotatable Bond Count |
5
|
Heavy Atom Count |
20
|
Complexity |
287
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
KJBONRGCLLBWCJ-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C16H23NO2.ClH/c1-5-11-7-6-8-12-9-14(19-15(11)12)13(18)10-17-16(2,3)4;/h6-9,13,17-18H,5,10H2,1-4H3;1H
|
Chemical Name |
2-(tert-butylamino)-1-(7-ethyl-1-benzofuran-2-yl)ethanol;hydrochloride
|
Synonyms |
Bufuralol hydrochloride; 60398-91-6; Bufuralol HCl; 59652-29-8; Angium; bufuralol, hydrochloride; Bufuralol (hydrochloride); Bufurolol hydrochloride;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
Ethanol: 15 mg/mL (50.37 mM)
DMSO: 10 mg/mL (33.58 mM) |
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.3577 mL | 16.7887 mL | 33.5773 mL | |
5 mM | 0.6715 mL | 3.3577 mL | 6.7155 mL | |
10 mM | 0.3358 mL | 1.6789 mL | 3.3577 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.