yingweiwo

(R)-Mephenytoin ((-)-Mephenytoin)

Alias: (R)-Mephenytoin; 71140-51-7; (R)-(-)-Mephenytoin; R-Mephenytoin; (-)-Mephenytoin; (5r)-5-ethyl-3-methyl-5-phenylimidazolidine-2,4-dione; Mephenytoin, (-)-; (R)-5-Ethyl-3-methyl-5-phenylimidazolidine-2,4-dione;
Cat No.:V73942 Purity: ≥98%
(R)-Mephenytoin ((-)-Mephenytoin) is the R-enantiomer of mephenytoin.
(R)-Mephenytoin ((-)-Mephenytoin)
(R)-Mephenytoin ((-)-Mephenytoin) Chemical Structure CAS No.: 71140-51-7
Product category: Cytochrome P450
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
50mg
100mg
Other Sizes

Other Forms of (R)-Mephenytoin ((-)-Mephenytoin):

  • Mephenytoin
  • (S)-Mephenytoin ((+)-Mephenytoin)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
(R)-Mephenytoin ((-)-Mephenytoin) is the R-enantiomer of mephenytoin. Mephenytoin is an anticonvulsant (antiepileptic/antiseizure).
Biological Activity I Assay Protocols (From Reference)
Targets
CYP2C9
ln Vitro
In order to produce 5-phenyl-5-ethylhydantoin (nirvanol), (R)-mephenytoin can be N-demethylated by the cytochrome P450 (CYP) isoform CYP2C9[1].
The metabolism of mephenytoin to its two major metabolites, 4-OH-mephenytoin (4-OH-M) and 5-phenyl-5-ethylhydantoin (nirvanol) was studied in human liver microsomes by a reversed phase HPLC assay. Because of preferential hydroxylation of S-mephenytoin in vivo, microsomes (5-300 micrograms protein) were incubated separately with S- and R-mephenytoin. After addition of phenobarbital as internal standard, the incubation mixture was extracted with dichloromethane. The residue remaining after evaporation was dissolved in water and injected on a 60 X 4.6-mm reversed-phase column (5 mu-C-18). Elution with acetonitrile/methanol/sodium perchlorate (20 mM, pH 2.5) led to almost baseline separation of mephenytoin, metabolites, and phenobarbital. Quantitation was performed by uv-absorption at 204 nm by the internal standard method. Propylene glycol was found to be the best solvent for mephenytoin, but inhibited the reaction noncompetitively. 4-OH-M and nirvanol could be detected at concentrations in the incubation mixture as low as 40 and 80 nM, respectively. The rates of metabolite formation were linear with time and protein concentration. The reaction was found to be substrate stereoselective. At substrate concentrations below 0.5 mM S-mephenytoin was preferentially hydroxylated to 4-OH-M, while R-mephenytoin was preferentially demethylated to nirvanol at all substrate concentrations tested (25-1600 microM). These data provide a mechanistic explanation for the stereospecific pharmacokinetics in vivo. The dependence of both metabolic relations on NADPH and the inhibition by CO suggest that they are mediated by cytochrome P-450-type monooxygenases[1].
Enzyme Assay
Previous biochemical studies have suggested that tolbutamide and mephenytoin are metabolized by the same cytochrome P450 enzyme. Conversely, clinical studies indicate the involvement of different P450 forms in tolbutamide and mephenytoin metabolism. Our objective was to elucidate further those P450 enzymes responsible for hydroxylation of these two drugs. We studied both tolbutamide and (S)-mephenytoin hydroxylation in microsomes from 38 different normal adult human livers, and found large variability in the rates of metabolism for both reactions (1.75-47.4 nmol/mg/hr for hydroxytolbutamide formation and 0.1-7.2 nmol/mg/hr for 4-hydroxymephenytoin formation). No significant correlation was found between the two activities. However, both reactions shared common inhibitors in vitro, including inhibition by antikidney-liver-microsome autoantibodies (Meier and Meyer, Biochemistry 26: 8466-8474, 1987) and by teniposide. Two human liver cDNAs for P450s of the CYP2C subfamily designated IIC8 and IIC9 (S. Kimura, J. Pastewka, H. V. Gelboin and F. J. Gonzalez, Nucl. Acids Res. 15: 10053-10054, 1987), were functionally expressed in human HepG2 and TK- cells using a vaccinia virus vector. Interestingly, tolbutamide was hydroxylated by both expressed P450s. Only IIC9 catalyzed the 4-hydroxylation of (R)-mephenytoin and neither enzyme metabolized (S)-mephenytoin. We conclude that tolbutamide and (R)-mephenytoin are both metabolized by the same P450 enzyme, IIC9, and that tolbutamide is hydroxylated by an additional highly related enzyme, IIC8, contributing to the lack of correlation of the two hydroxylase activities among human liver microsomes and indicating the absence of a monogenically controlled polymorphism for tolbutamide[2].
References

[1]. Assay of mephenytoin metabolism in human liver microsomes by high-performance liquid chromatography. Anal Biochem. 1985 Dec;151(2):286-91.

[2]. Tolbutamide and mephenytoin hydroxylation by human cytochrome P450s in the CYP2C subfamily. J Pharmacol Exp Ther. 1990 Jan;252(1):442-7.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C12H14N2O2
Molecular Weight
218.25
Exact Mass
218.106
CAS #
71140-51-7
Related CAS #
Mephenytoin;50-12-4;(S)-Mephenytoin;70989-04-7
PubChem CID
119127
Appearance
Typically exists as solid at room temperature
Density
1.154g/cm3
Melting Point
137-138ºC
Index of Refraction
1.541
LogP
1.74
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
2
Heavy Atom Count
16
Complexity
310
Defined Atom Stereocenter Count
1
SMILES
CCC1(C(=O)N(C(=O)N1)C)C2=CC=CC=C2
InChi Key
GMHKMTDVRCWUDX-GFCCVEGCSA-N
InChi Code
InChI=1S/C12H14N2O2/c1-3-12(9-7-5-4-6-8-9)10(15)14(2)11(16)13-12/h4-8H,3H2,1-2H3,(H,13,16)/t12-/m1/s1
Chemical Name
(5R)-5-ethyl-3-methyl-5-phenylimidazolidine-2,4-dione
Synonyms
(R)-Mephenytoin; 71140-51-7; (R)-(-)-Mephenytoin; R-Mephenytoin; (-)-Mephenytoin; (5r)-5-ethyl-3-methyl-5-phenylimidazolidine-2,4-dione; Mephenytoin, (-)-; (R)-5-Ethyl-3-methyl-5-phenylimidazolidine-2,4-dione;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 220 mg/mL (1008.02 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 5.5 mg/mL (25.20 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 55.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 2: ≥ 5.5 mg/mL (25.20 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 55.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.5819 mL 22.9095 mL 45.8190 mL
5 mM 0.9164 mL 4.5819 mL 9.1638 mL
10 mM 0.4582 mL 2.2910 mL 4.5819 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us