Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
50mg |
|
||
Other Sizes |
|
Targets |
CYP2
|
---|---|
ln Vitro |
In the presence of cytochrome b5, the Km of S-mephenytoin for each of the five isolated cytochrome P-450s was 1.25 mM [1].
Two forms of cytochrome P-450 (P-450), designated P-450MP-1 and P-450MP-2, were purified to electrophoretic homogeneity from human liver microsomes on the basis of mephenytoin 4-hydroxylase activity. Purified P-450MP-1 and P-450MP-2 contained 12-17 nmol of P-450/mg of protein and had apparent monomeric molecular weights of 48,000 and 50,000, respectively. P-450MP-1 and P-450MP-2 were found to be very similar proteins as judged by chromatographic behavior on n-octylamino-Sepharose 4B, hydroxylapatite, and DEAE- and CM-cellulose columns, spectral properties, amino acid composition, peptide mapping, double immunodiffusion analysis, immunoinhibition, and N-terminal amino acid sequences. In vitro translation of liver RNA yielded polypeptides migrating with P-450MP-1 or P-450MP-2, depending upon which form was in each sample, indicating that the two P-450s are translated from different mRNAs. When reconsituted with NADPH-cytochrome-P-450 reductase and L-alpha-dilauroyl-sn-glyceryo-3-phosphocholine, P-450MP-1 and P-450MP-2 gave apparently higher turnover numbers for mephenytoin 4-hydroxylation than did the P-450 in the microsomes. The addition of purified rat or human cytochrome b5 to the reconstituted system caused a significant increase in the hydroxylation activity; the maximum stimulation was obtained when the molar ratio of cytochrome b5 to P-450 was 3-fold. Rabbit anti-human cytochrome b5 inhibited NADH-cytochrome-c reductase and S-mephenytoin 4-hydroxylase activities in human liver microsomes. In the presence of cytochrome b5, the Km value for S-mephenytoin was 1.25 mM with all five purified cytochrome P-450s preparations, and Vmax values were 0.8-1.25 nmol of 4-hydroxy product formed per min/nmol of P-450. P-450MP is a relatively selective P-450 form that metabolizes substituted hydantoins well. Reactions catalyzed by purified P-450MP-1 and P-450MP-2 preparations and inhibited by anti-P-450MP in human liver microsomes include S-mephenytoin 4-hydroxylation, S-nirvanol 4-hydroxylation, S-mephenytoin N-demethylation, and diphenylhydantoin 4-hydroxylation. Thus, at least two very similar forms of human P-450 are involved in S-mephenytoin 4-hydroxylation, an activity which shows genetic polymorphism.[1] |
ln Vivo |
The present study assesses the role of members of the human CYP2C subfamily in the 4'-hydroxylation of (S)-mephenytoin. When recombinant CYP2C proteins were expressed using a yeast cDNA expression system, 2C19 stereospecifically 4'-hydroxylated (S)-mephenytoin with a turnover number at least 10 times higher than that of human liver microsomes. 2C9 (both Ile359 and Leu359 alleles) and 2C18 (Thr385 and Met385 alleles) metabolized this substrate at a rate 100-fold lower than 2C19, and metabolism by these 2C proteins was not stereospecific for the S-enantiomer. 2C8 exhibited very little mephenytoin 4'-hydroxylase activity. In contrast, the Ile359 allele of 2C9 had a high turnover number for the hydroxylation of tolbutamide, while the Leu359 allele was less active toward this substrate. Immunoblot analysis of 16 human liver donor samples indicated that (S)-mephenytoin 4'-hydroxylase activity correlated with the hepatic CYP2C19 content, but it did not correlate with the hepatic content of CYP2C9. Moreover, direct sequencing of the polymerase chain reaction (PCR) products of 2C9 mRNA from six of these human livers through areas of known allelic variations indicated that the identity of the allele of 2C9 (Cys144 vs Arg, Tyr358 vs Cys, Ile359 vs Leu, or Gly417 vs Asp) did not appear to influence (S)-mephenytoin 4'-hydroxylase activity in these samples. These data indicate that 2C19 is the principal determinant of (S)-mephenytoin 4'-hydroxylase activity in human liver[2].
|
ADME/Pharmacokinetics |
Metabolism / Metabolites
S-Mephenytoin has known human metabolites that include Nirvanol and 4'-Hydroxymephenytoin. |
References |
|
Additional Infomation |
(S)-Mephenytoin is an imidazolidine-2,4-dione.
|
Molecular Formula |
C12H14N2O2
|
---|---|
Molecular Weight |
218.25176
|
Exact Mass |
218.10552
|
CAS # |
70989-04-7
|
Related CAS # |
(R)-Mephenytoin;71140-51-7;Mephenytoin;50-12-4
|
PubChem CID |
107921
|
Appearance |
White to off-white solid powder
|
LogP |
1.5
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
2
|
Rotatable Bond Count |
2
|
Heavy Atom Count |
16
|
Complexity |
310
|
Defined Atom Stereocenter Count |
1
|
SMILES |
CC[C@@]1(C(N(C(N1)=O)C)=O)C2=CC=CC=C2
|
InChi Key |
GMHKMTDVRCWUDX-LBPRGKRZSA-N
|
InChi Code |
InChI=1S/C12H14N2O2/c1-3-12(9-7-5-4-6-8-9)10(15)14(2)11(16)13-12/h4-8H,3H2,1-2H3,(H,13,16)/t12-/m0/s1
|
Chemical Name |
(5S)-5-ethyl-3-methyl-5-phenylimidazolidine-2,4-dione
|
Synonyms |
(S)-Mephenytoin; 70989-04-7; S-Mephenytoin; (S)-(+)-Mephenytoin; (5s)-5-ethyl-3-methyl-5-phenylimidazolidine-2,4-dione; Mephenytoin, (+)-; Mephenytoin, D-; (+)-Mephenytoin;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO: 66.67 mg/mL (305.48 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 6 mg/mL (27.49 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 60.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 6 mg/mL (27.49 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 60.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 6 mg/mL (27.49 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 4.5819 mL | 22.9095 mL | 45.8190 mL | |
5 mM | 0.9164 mL | 4.5819 mL | 9.1638 mL | |
10 mM | 0.4582 mL | 2.2910 mL | 4.5819 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.