Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
Other Sizes |
|
Targets |
CFTR/cystic fibrosis transmembrane conductance regulator
|
---|---|
ln Vitro |
In vitro, VX-445-tezacaftor-ivacaftor significantly improved Phe508del CFTR protein processing, trafficking, and chloride transport to a greater extent than any two of these agents in dual combination. [2]
|
ln Vivo |
In patients with cystic fibrosis, VX-445–tezacaftor–ivacaftor had an acceptable safety and side-effect profile. Most adverse events were mild or moderate. The treatment also resulted in an increased percentage of predicted FEV1 of up to 13.8 points in the Phe508del–MF group (P<0.001). In patients in the Phe508del–Phe508del group, who were already receiving tezacaftor–ivacaftor, the addition of VX-445 resulted in an 11.0-point increase in the percentage of predicted FEV1 (P<0.001). In both groups, there was a decrease in sweat chloride concentrations and improvement in the respiratory domain score on the Cystic Fibrosis Questionnaire–Revised. CONCLUSIONS: The use of VX-445–tezacaftor–ivacaftor to target Phe508del CFTR protein resulted in increased CFTR function in vitro and translated to improvements in patients with cystic fibrosis with one or two Phe508del alleles. This approach has the potential to treat the underlying cause of cystic fibrosis in approximately 90% of patients [2].
|
References |
|
Molecular Formula |
C26H34F3N7O4S
|
---|---|
Molecular Weight |
597.652874469757
|
Exact Mass |
597.234
|
Elemental Analysis |
C, 52.25 H, 5.73 F, 9.54 N, 16.41 O, 10.71 S, 5.36
|
CAS # |
2229860-99-3
|
Related CAS # |
Elexacaftor;2216712-66-0
|
PubChem CID |
134587287
|
Appearance |
White to light yellow solid powder
|
LogP |
4.9
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
11
|
Rotatable Bond Count |
8
|
Heavy Atom Count |
41
|
Complexity |
1050
|
Defined Atom Stereocenter Count |
1
|
SMILES |
S(C1=CN(C)N=C1C)(NC(C1=CC=C(N2C=CC(=N2)OCC(C)(C)C(F)(F)F)N=C1N1C[C@H](C)CC1(C)C)=O)(=O)=O
|
InChi Key |
MVRHVFSOIWFBTE-MRXNPFEDSA-N
|
InChi Code |
InChI=1S/C26H34F3N7O4S/c1-16-12-25(5,6)35(13-16)22-18(23(37)33-41(38,39)19-14-34(7)31-17(19)2)8-9-20(30-22)36-11-10-21(32-36)40-15-24(3,4)26(27,28)29/h8-11,14,16H,12-13,15H2,1-7H3,(H,33,37)/t16-/m1/s1
|
Chemical Name |
N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethylpropoxy)pyrazol-1-yl]-2-[(4R)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide
|
Synonyms |
(R)-Elexacaftor; 2229860-99-3; (R)-N-((1,3-dimethyl-1H-pyrazol-4-yl)sulfonyl)-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazol-1-yl)-2-(2,2,4-trimethylpyrrolidin-1-yl)nicotinamide; VX-445 R enantiomer; SCHEMBL20239741; MVRHVFSOIWFBTE-MRXNPFEDSA-N;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO: 125 mg/mL (209.15 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.08 mg/mL (3.48 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.08 mg/mL (3.48 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.6732 mL | 8.3661 mL | 16.7322 mL | |
5 mM | 0.3346 mL | 1.6732 mL | 3.3464 mL | |
10 mM | 0.1673 mL | 0.8366 mL | 1.6732 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.