Size | Price | Stock | Qty |
---|---|---|---|
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
Targets |
IC50: 19 nM (porcine gastric H+,K+-ATPase, at pH 6.5)[2]
|
---|---|
ln Vitro |
Porcine stomach H+,K+-ATPase activity is seen in response to vonoprazan (0.1 nM–10 μM; 30 minutes) in a concentration-dependent manner[2]. Even at 500 times higher concentrations than their IC50 values against stomach H+,K+-ATPase activity, vonoprazan does not inhibit Na+,K+-ATPase activity[2].
|
ln Vivo |
Rats' baseline and 2-deoxy-D-glucose (2DG, 200 mg/kg sc)-stimulated stomach acid production is totally inhibited by vonoprazan (1-4 mg/kg; po) at a dose of 4 mg/kg[2].
|
Enzyme Assay |
Proton Potassium Adenosine Triphosphatase (H+,K+-ATPase) Inhibitory Activity Test [1]
Accordinpg to the method of Wallmark et al., a gastric mucosal membrane microsomal fraction was prepared from the stomach of swine. First, the stomach was removed, washed with tap water, and immersed in 3 mol/L brine, and the surface of the mucosal membrane was wiped with a paper towel. The gastric mucosal membrane was detached, chopped, and homogenized in a 0.25 mol/L saccharose solution (pH 6.8) containing 1 mmol/L EDTA and 10 mmol/L tris-hydrochloric acid using polytron (Kinematica). The obtained homogenate was centrifuged at 20000g for 30 min and the supernatant was centrifuged at 100000g for 90 min. The precipitate was suspended in 0.25 mol/L saccharose solution, superimposed on a 0.25 mol/L saccharose solution containing 7.5% Ficoll, and centrifuged at 100000g for 5 h. The fraction containing the interface between the both layers was recovered, and centrifugally washed with 0.25 mol/L saccharose solution. The obtained microsomal fraction was used as a proton, potassium adenosine triphosphatase standard product. To 40 μL of a 50 mmol/L HEPES-Tris buffer (5 mmol/L magnesium chloride, 10 mmol/L potassium chloride, 10 μmol/L valinomycin, pH 6.5) containing 2.5 μg/mL (based on the protein concentration) of the enzyme standard product was added a test compound (5 μL) dissolved in a 10% aqueous dimethyl sulfoxide solution, and the mixture was incubated at 37 °C for 30 min. The enzyme reaction was started by adding 5 μL of a 2 mmol/L adenosine triphosphate Tris salt solution (50 mmol/L HEPES-Tris buffer (5 mmol/L magnesium chloride, pH 6.5)). The enzyme reaction was carried out at 37 °C for 20 min, and 15 μL of a malachite green solution (0.12% malachite green solution in sulfuric acid (2.5 mol/L), 7.5% ammonium molybdate, and 11% Tween 20 were mixed at a ratio of 100:25:2) was added to quench the reaction. After the mixture was allowed to stand at room temperature for 15 min, the resulting reaction product of inorganic phosphorus with malachite green was colorimetrically determined at a wavelength of 610 nm. In addition, the amount of the inorganic phosphoric acid in the reaction solution free of potassium chloride was measured in the same manner, which was subtracted from the inorganic phosphoric acid amount in the presence of potassium chloride to determine the H+,K+-ATPase activity. The inhibitory rate (%) was determined from the activity value of the control and the activity values of various concentrations of the test compound, and the 50% inhibitory concentration (IC50) of the H+,K+-ATPase activity was determined. |
Animal Protocol |
Animal/Disease Models: Male 7- or 8weeks old SD (Sprague-Dawley) rat[2]
Doses: 0.5, 1, 2, and 4 mg/kg Route of Administration: Oral administration Experimental Results: Inhibited basal gastric acid secretion in a dose-dependent manner. |
Toxicity/Toxicokinetics |
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation No information is available on the clinical use of vonoprazan during breastfeeding. Because of liver damage that occurred in nursing rodents, the manufacturer recommends that nursing mothers should pump and discard human milk while taking and for 2 days after the last dose. An alternate drug may be preferred. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Protein Binding In healthy subjects, the plasma protein binding of vonoprazan ranges from 85% to 88%. At plasma concentrations between 0.1 and 10 mcg/mL, the plasma protein binding of vonoprazan is independent of concentration. |
References |
|
Additional Infomation |
Vonoprazan Fumarate is the fumarate salt form of vonoprazan, a pyrrole derivative and reversible potassium-competitive acid blocker (P-CAB), with potential antacid activity. Upon administration, vonoprazan specifically and competitively binds to the gastric hydrogen-potassium ATPase (H+/K+ ATPase) proton pump at or, more likely, near its potassium ion (K+) binding site and sterically inhibits K+ binding. This blocks the activation of the H+/K+ ATPase by K+, inhibits the proton pump and prevents gastric acid secretion, thereby lowering gastric acid levels.
See also: Vonoprazan (has active moiety); Amoxicillin; clarithromycin; vonoprazan fumarate (component of); Amoxicillin; vonoprazan fumarate (component of). |
Molecular Formula |
C21H20FN3O6S
|
---|---|
Molecular Weight |
461.46
|
Exact Mass |
461.105
|
Elemental Analysis |
C, 54.66; H, 4.37; F, 4.12; N, 9.11; O, 20.80; S, 6.95
|
CAS # |
881681-01-2
|
Related CAS # |
Vonoprazan;881681-00-1;Vonoprazan hydrochloride;1957202-44-6
|
PubChem CID |
45375887
|
Appearance |
White to off-white solid powder
|
LogP |
3.829
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
9
|
Rotatable Bond Count |
7
|
Heavy Atom Count |
32
|
Complexity |
629
|
Defined Atom Stereocenter Count |
0
|
SMILES |
CNCC1=CN(C(=C1)C2=CC=CC=C2F)S(=O)(=O)C3=CN=CC=C3.C(=C/C(=O)O)\C(=O)O
|
InChi Key |
ROGSHYHKHPCCJW-WLHGVMLRSA-N
|
InChi Code |
InChI=1S/C17H16FN3O2S.C4H4O4/c1-19-10-13-9-17(15-6-2-3-7-16(15)18)21(12-13)24(22,23)14-5-4-8-20-11-14;5-3(6)1-2-4(7)8/h2-9,11-12,19H,10H2,1H3;1-2H,(H,5,6)(H,7,8)/b;2-1+
|
Chemical Name |
(E)-but-2-enedioic acid;1-[5-(2-fluorophenyl)-1-pyridin-3-ylsulfonylpyrrol-3-yl]-N-methylmethanamine
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO: 50 mg/mL (108.35 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.42 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (5.42 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (5.42 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.1670 mL | 10.8352 mL | 21.6704 mL | |
5 mM | 0.4334 mL | 2.1670 mL | 4.3341 mL | |
10 mM | 0.2167 mL | 1.0835 mL | 2.1670 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT03808493 | COMPLETED | Drug:TAK-438 OD Drug:TAK-438 |
Japanese Healthy Adult Male | Takeda | 2019-01-30 | Phase 1 |
NCT02141698 | COMPLETED | Drug: TAK-438 Drug: Esomeprazole |
Dose Finding Study | Takeda | 2007-10 | Phase 1 |
NCT02774902 | COMPLETED | Drug: TAK-438 Drug: Clarithromycin |
Healthy Volunteers | Takeda | 2010-08 | Phase 1 |
NCT02141711 | COMPLETED | Drug: TAK-438 Drug: TAK-438 Placebo |
Erosive Esophagitis(EE) GastroesophagealReflux Disease (GERD) |
Takeda | 2008-10 | Phase 1 |
NCT01452776 | COMPLETED | Drug: TAK-438 | Erosive Esophagitis | Takeda | 2011-09 | Phase 3 |