Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
FP Receptor
|
---|---|
ln Vivo |
The acid of latanoprost in cynomolgus monkeys had a brief half-life in plasma and was partially converted to the latanoprost 15-keto acid. The main metabolic process was the β-oxidation of latanoprost acid[1].
|
Animal Protocol |
Latanoprost (13,14-dihydro-15(R)-17-phenyl-18,19,20-trinor-PGF2a isopropyl ester, CAS 130209-82-4 PhXA41, Xalatan) is an antiglaucoma prodrug which enhances the bioavailability of the drug into the eye compared to the corresponding acid. The pharmacokinetics and metabolism of this drug was studied in the cynomolgus monkey after daily topical administration on the eye of [13,14-(3) H] labelled latanoprost (6 micrograms per eye) during 21 days. Plasma, urine and homogenised faeces samples were purified by separation on a Sep-Pak C18 cartridge before analysis by reversed phase liquid chromatography (RP-HPLC) with one-line radioactivity detection. The maximum plasma concentration of radioactivity obtained within 10 min post dose was as a mean 7.87 +/- 3.18 ng eq./ml on day 1 and 9.31 +/- 4.21 ng eq./ml on day 21. The plasma concentration of radioactivity declined rapidly up to 3 h post-dose both on day 1 and day 21, but a small amount of tritiated water accumulated with time. The majority of the radioactivity was recovered in urine but substantial amounts were also eliminated in the faces. No latanoprost was found in plasma after repeated topical administration on the eye. The plasma profiles from HPLC separation of samples showed a rapid and complete hydrolysis of the ester. The elimination half-life of the acid of latanoprost was estimated to be 13.8 +/- 1.7 min for day 1 and 12.4 +/- 4.8 min for day 21. No induction or inhibition of the metabolism occurred after the repeated administration. By comparison with reference substances the 15-keto acid of latanoprost was found to be present in plasma and the major metabolites in urine and faeces collected during day 2 and day 20 were identified as 1,2-dinor acid of latanoprost, 1,2,3,4-tetranor acid and 1,2,3,4-tetranor lactone of latanoprost. Tritiated water was excreted in the urine and a small amount of the acid of latanoprost was excreted in the faeces. In conclusion, latanoprost was rapidly absorbed and hydrolysed to the corresponding acid after repeated topical administration to the monkey eye. The acid of latanoprost had a short half-life in plasma and it was partly converted to the 15-keto acid of latanoprost. beta-Oxidation of the acid of latanoprost was the major metabolic pathway. No induction or inhibition of the metabolism occurred upon repeated administration and no indications of accumulation of the drug or drug metabolites were observed. The pharmacokinetics of latanoprost was similar after a single and repeated topical administration.
|
References |
Molecular Formula |
C26H38O5
|
---|---|
Molecular Weight |
430.58
|
Exact Mass |
386.209
|
CAS # |
135646-98-9
|
PubChem CID |
9867370
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.2±0.1 g/cm3
|
Boiling Point |
594.2±50.0 °C at 760 mmHg
|
Flash Point |
327.2±26.6 °C
|
Vapour Pressure |
0.0±1.8 mmHg at 25°C
|
Index of Refraction |
1.608
|
LogP |
1.9
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
5
|
Rotatable Bond Count |
14
|
Heavy Atom Count |
31
|
Complexity |
564
|
Defined Atom Stereocenter Count |
4
|
SMILES |
CC(C)OC(=O)CCC/C=C\C[C@@H]1[C@@H](CCC(=O)CCC2=CC=CC=C2)[C@@H](C[C@@H]1O)O
|
InChi Key |
DKYCMQSMHPIBBZ-VIZYZFHWSA-N
|
InChi Code |
InChI=1S/C26H38O5/c1-19(2)31-26(30)13-9-4-3-8-12-22-23(25(29)18-24(22)28)17-16-21(27)15-14-20-10-6-5-7-11-20/h3,5-8,10-11,19,22-25,28-29H,4,9,12-18H2,1-2H3/b8-3-/t22-,23-,24+,25-/m1/s1
|
Chemical Name |
propan-2-yl (Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-(3-oxo-5-phenylpentyl)cyclopentyl]hept-5-enoate
|
Synonyms |
15-Ketolatanoprost; propan-2-yl (Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-(3-oxo-5-phenylpentyl)cyclopentyl]hept-5-enoate; SCHEMBL14520774; DTXSID70432091; DKYCMQSMHPIBBZ-VIZYZFHWSA-N; AKOS027326713;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.3224 mL | 11.6122 mL | 23.2245 mL | |
5 mM | 0.4645 mL | 2.3224 mL | 4.6449 mL | |
10 mM | 0.2322 mL | 1.1612 mL | 2.3224 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.