Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
Other Sizes |
|
Targets |
IL-6 IL-8 IL1R1 8 nM (IC50)
|
---|---|
ln Vitro |
AF12198 has an IC50 of 8.0 nM, which is approximately equivalent to IL-1ra's 4.0 nM for type I receptors when it comes to competition for binding to 125I-IL-1α [1]. In heparinized human primate blood, AF12198 (0-5 ng; 8 hours) suppresses IL-6 production with an IC50 of 15 μM and IL-1ra with an IC50 of 2 nM. Similarly, with blood from cynomolgus monkeys, the IC50 values for AF12198 and IL-1ra were 17 μM and 30 nM, respectively. Moreover, neither AF12198 nor IL-1RA by themselves were able to produce IL-6 in human or cynomolgus monkey blood [1].
|
ln Vivo |
Rats with acute lung inflammation were given AF12198 (intravenous infusion; 16 mg/kg; 30 minutes prior to LPS intravenous injection), which decreased the number of inflamed rats by 4 hours (32.6%) and 12 minutes after the injection. 24-hour period (65.3%) and hourly (50.1%)[2].
|
Animal Protocol |
Animal/Disease Models: Male Wistar rats[2]
Doses: 16 mg/kg Route of Administration: intravenous (iv) infusion; 30 min before LPS intravenous (iv) injection Experimental Results: diminished pulmonary microvascular leakage in rats. |
References |
|
Molecular Formula |
C96H123N19O22
|
---|---|
Molecular Weight |
1895.12
|
Exact Mass |
1893.91
|
CAS # |
185413-30-3
|
PubChem CID |
16135237
|
Appearance |
White to off-white solid powder
|
Density |
1.354 g/cm3
|
LogP |
5.639
|
Hydrogen Bond Donor Count |
20
|
Hydrogen Bond Acceptor Count |
22
|
Rotatable Bond Count |
48
|
Heavy Atom Count |
137
|
Complexity |
4200
|
Defined Atom Stereocenter Count |
15
|
SMILES |
C[C@H]([C@@H](C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CC2=CNC3=CC=CC=C32)C(=O)N[C@@H](CC4=CC=C(C=C4)O)C(=O)N[C@@H](CCC(=O)N)C(=O)N5CC[C@H]5C(=O)N[C@@H](CC6=CC=C(C=C6)O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N7CCC[C@H]7C(=O)N[C@@H](CC(C)C)C(=O)N)NC(=O)[C@H](CC8=CNC9=CC=CC=C98)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)C)O
|
InChi Key |
VASLMBMCJADVGR-XQDBXYBUSA-N
|
InChi Code |
InChI=1S/C96H123N19O22/c1-51(2)41-69(83(98)124)107-92(133)77-24-16-38-113(77)95(136)75(42-52(3)4)111-84(125)53(5)102-86(127)71(44-57-25-29-61(118)30-26-57)110-93(134)78-37-40-115(78)94(135)68(33-35-79(97)120)106-88(129)72(45-58-27-31-62(119)32-28-58)108-89(130)73(46-59-48-99-65-21-13-11-19-63(59)65)104-80(121)50-101-91(132)76-23-15-39-114(76)96(137)82(54(6)116)112-90(131)74(47-60-49-100-66-22-14-12-20-64(60)66)109-85(126)67(34-36-81(122)123)105-87(128)70(103-55(7)117)43-56-17-9-8-10-18-56/h8-14,17-22,25-32,48-49,51-54,67-78,82,99-100,116,118-119H,15-16,23-24,33-47,50H2,1-7H3,(H2,97,120)(H2,98,124)(H,101,132)(H,102,127)(H,103,117)(H,104,121)(H,105,128)(H,106,129)(H,107,133)(H,108,130)(H,109,126)(H,110,134)(H,111,125)(H,112,131)(H,122,123)/t53-,54+,67-,68-,69-,70-,71-,72-,73-,74-,75-,76-,77-,78-,82-/m0/s1
|
Chemical Name |
(4S)-4-[[(2S)-2-acetamido-3-phenylpropanoyl]amino]-5-[[(2S)-1-[[(2S,3R)-1-[(2S)-2-[[2-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[(2S)-2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[(2S)-2-[[(2S)-1-amino-4-methyl-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-4-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]carbamoyl]azetidin-1-yl]-1,5-dioxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-2-oxoethyl]carbamoyl]pyrrolidin-1-yl]-3-hydroxy-1-oxobutan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO: 100 mg/mL (52.77 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (1.32 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (1.32 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 0.5277 mL | 2.6384 mL | 5.2767 mL | |
5 mM | 0.1055 mL | 0.5277 mL | 1.0553 mL | |
10 mM | 0.0528 mL | 0.2638 mL | 0.5277 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.