yingweiwo

Nebentan potassium (YM598)

Cat No.:V75334 Purity: ≥98%
Nebentan potassium (YM598) is a potent, orally bioactive, non-peptide endothelin receptor (ETA receptor) antagonist modified by Bosentan.
Nebentan potassium (YM598)
Nebentan potassium (YM598) Chemical Structure CAS No.: 342005-82-7
Product category: Endothelin Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes

Other Forms of Nebentan potassium (YM598):

  • Nebentan
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Nebentan potassium (YM598) is a potent, orally bioactive, non-peptide endothelin receptor (ETA receptor) antagonist modified by Bosentan. Nebentan potassium inhibits [125I]endothelin-1 binding to human endothelin ETA and ETB receptors with Ki of 0.697 nM and 569 nM, respectively. Nebentan potassium may be utilized in research to improve cor pulmonale and myocardial infarction.
Biological Activity I Assay Protocols (From Reference)
Targets
ETA 0.679 nM (Ki) ETB 569 nM (Ki)
ln Vitro
In a concentration-dependent manner, nebentan potassium blocks the specific binding of [125I] endothelin-1 to endothelin ETA and ETB receptors; the Ki values for human and rat endothelin ETA receptors are 0.697 nM and 1.53 nM, respectively. By comparison, YM598 has low affinities, with Ki values of 569 nM and 155 nM for rat and human endothelin ETB receptors, respectively[1]. Nebentan potassium concentration-dependently suppresses the increase in [Ca2+]i induced by 10 nM endothelin-1 in both CHO and A10 cells when measuring intracellular Ca2+ concentration; the IC50 values for CHO cells are 26.2 nM and 26.7 nM, respectively[1].
ln Vivo
When taken orally for four weeks at a dose of 0.1–1 mg/kg, nebentan potassium dramatically slows the advancement of pulmonary hypertension and right ventricular hypertrophy[2]. Nebentan potassium (oral; 1 mg/kg; 30 weeks) considerably lowers both pulmonary congestion and both ventricle hypertrophy, which in turn improves the poor survival rate of CHF rats[2].
References

[1]. Pharmacological Characterization of YM598, an Orally Active and Highly Potent Selective Endothelin ET(A) Receptor Antagonist. Eur J Pharmacol. 2003 Sep 30;478(1):61-71.

[2]. YM598, an Orally Active ET(A) Receptor Antagonist, Ameliorates the Progression of Cardiopulmonary Changes and Both-Side Heart Failure in Rats With Cor Pulmonale and Myocardial Infarction. J Cardiovasc Pharmacol. 2004 Nov;44 Suppl 1:.

Additional Infomation
Endothelin Receptor Type A Antagonist YM598 is an orally active synthetic substituted phenylethenesulfonamide. As a selective endothelin A receptor antagonist, YM598 inhibits endothelin-mediated mechanisms involved in tumor cell growth and progression, angiogenesis, and metastasis. (NCI04)
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C24H20KN5O5S
Molecular Weight
529.61
Exact Mass
529.082
CAS #
342005-82-7
Related CAS #
Nebentan;403604-85-3
PubChem CID
12093171
Appearance
Off-white to light yellow solid powder
LogP
5.829
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
10
Rotatable Bond Count
9
Heavy Atom Count
36
Complexity
773
Defined Atom Stereocenter Count
0
SMILES
COC1=CC=CC=C1OC2=C(N=C(N=C2OC)C3=NC=CC=N3)[N-]S(=O)(=O)/C=C/C4=CC=CC=C4.[K+]
InChi Key
WOPWEXSDEXIRNG-ZUQRMPMESA-N
InChi Code
InChI=1S/C24H20N5O5S.K/c1-32-18-11-6-7-12-19(18)34-20-21(29-35(30,31)16-13-17-9-4-3-5-10-17)27-23(28-24(20)33-2)22-25-14-8-15-26-22;/h3-16H,1-2H3;/q-1;+1/b16-13+;
Chemical Name
potassium;[6-methoxy-5-(2-methoxyphenoxy)-2-pyrimidin-2-ylpyrimidin-4-yl]-[(E)-2-phenylethenyl]sulfonylazanide
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 125 mg/mL (236.02 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 1.67 mg/mL (3.15 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 16.7 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 1.67 mg/mL (3.15 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 16.7 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 1.67 mg/mL (3.15 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 16.7 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.8882 mL 9.4409 mL 18.8818 mL
5 mM 0.3776 mL 1.8882 mL 3.7764 mL
10 mM 0.1888 mL 0.9441 mL 1.8882 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us