yingweiwo

(1R)-Deruxtecan

Alias: (1R)-Deruxtecan; SCHEMBL26807942;
Cat No.:V76159 Purity: ≥98%
(1R)-Deruxtecan is a drug linker conjugate of ADC.
(1R)-Deruxtecan
(1R)-Deruxtecan Chemical Structure CAS No.: 2270986-87-1
Product category: Drug-Linker Conjugates for ADC
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of (1R)-Deruxtecan:

  • Exatecan mesylate dihydrate (DX-8951 mesylate dihydrate)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
(1R)-Deruxtecan is a drug linker conjugate of ADC.
Biological Activity I Assay Protocols (From Reference)
Targets
Topoisomerase; Camptothecins
ln Vitro
Antibody-drug conjugates deliver anticancer agents selectively and efficiently to tumor tissue and have significant antitumor efficacy with a wide therapeutic window[2]. The antitumor activity of [fam-] trastuzumab deruxtecan for CRC with five CRC cell lines that possess different biological characteristics was investigated. The expression of HER2 at both mRNA and protein levels in these various cell lines was first examined. Immunoblot analysis and RT and real-time polymerase chain reaction (PCR) analysis revealed that the amounts of HER2 protein and HER2 mRNA were much smaller in all the CRC cell lines than in NCI-N87 cells. [fam-] trastuzumab deruxtecan attenuated the viability of NCI-N87 cells, consistent with previous results, whereas all five CRC cell lines showed resistance to this agent. These findings suggested that the expression level of HER2 protein might determine sensitivity to [fam-] trastuzumab deruxtecan.
ln Vivo
Antitumor activity of DS-8201a in low HER2–expressing tumors [3]
T-DM1 has been approved for HER2-positive metastatic breast cancer patients, defined as being HER2 IHC 3+ or IHC 2+/FISH–positive according to the current guidelines, and there are still clinical unmet needs in FISH-negative, HER2 1+ and 2+ populations for HER2-targeting therapies. Therefore, the antitumor activity of DS-8201a was evaluated in various mice xenograft models with different HER2 expression levels; KPL-4 (strong positive), JIMT-1 (moderate positive), Capan-1 (weak positive), and GCIY (negative) (Fig. 4A and B). Anti-HER2 ADC with the same drug-linker as DS-8201a and about half the DAR (DAR 3.4) was also evaluated to investigate the effect of DAR on antitumor activity. While T-DM1 was effective against only the KPL4 model, DS-8201a was effective against all HER2-positive models with KPL4, JIMT-1, and Capan-1. Both ADCs were not effective in the GCIY model. Anti-HER2 ADC (DAR 3.4) inhibited tumor growth against all HER2-positive models, and the efficacy was HER2 expression–dependent. A stronger efficacy was apparently observed for DS-8201a than anti-HER2 ADC (DAR 3.4) in the HER2 weak–positive Capan-1 model. These results suggest that the high DAR ADC, DS-8201a, enables the delivery of sufficient payload amounts into cancer cells, indicating cytotoxicity even with low HER2 levels. In case of HER2 strong –positive models, even a low DAR ADC is able to deliver a sufficient amount of payload for cell death. DS-8201a was effective in tumors with broader HER2 levels due to its high DAR, approximately 8. To confirm HER2-specificity of DS-8201a in a HER2 low–expressing model, a competitive inhibition study was performed in a HER2 low CFPAC-1 model (Fig. 4C). The efficacy of DS-8201a was cancelled by the prior treatment of the anti-HER2 Ab, and the control IgG-ADC did not inhibit tumor growth at a 3-fold higher dose than DS-8201a. From these results, the HER2 specificity of DS-8201a in a HER2 low–expressing model was confirmed.
Enzyme Assay
Parallel artificial membrane permeability assay (PAMPA) was carried out using a Freedom EVO200 system. The filter membrane of the acceptor plate was coated with GIT‐0 lipid solution. Each compound solution in DMSO (10 mM) was added to Prisma HT buffer (Pion) to obtain 5‐μM donor solutions (containing 0.05% DMSO, pH 5.0 and pH 7.4), and then placed on a donor plate. The acceptor plate was filled with an acceptor sink buffer. The donor plate was stacked onto the acceptor plate and incubated for 4 h at 25°C. After incubation, the concentrations of compounds in both plates were measured by an LC‐MS/MS system (API 4000). The permeability coefficient (Peff; 10−6 cm/s) was calculated using PAMPA Evolution DP software (Pion).[1]
Cell Assay
Cells were seeded in a 96‐well plate at 1000 cells/well for KPL‐4 and 2000 cells/well for MDA‐MB‐468. After overnight incubation, a serially diluted solution of each ADC was added. Cell viability was evaluated after 5 days using a CellTiter‐Glo luminescent cell viability assay from Promega according to the manufacturer's instructions. For coculture study, KPL‐4 and MDA‐MB‐468 cells were seeded in a 6‐well plate at 1 × 105 cells and 3 × 105 cells, respectively, in 2 mL/well culture medium. After overnight incubation, the supernatant was removed from the plate and each ADC diluent (10 nM) was added at 6 mL/well. Viable cells were detached from the plate after 5 days of culture, and the cell number in each well was determined using a cell counter. In order to determine the ratio of KPL‐4 and MDA‐MD‐468 cells of the total viable cells, the cells were stained with anti‐HER2/nue FITC and incubated on ice for 20 min. After washing, fluorescent signals of 2 × 104 stained cells were measured using a flow cytometer. Based on the number and ratio of HER2‐positive and HER2‐negative cells in each treatment well, the number of KPL‐4 or MDA‐MB‐468 cells was calculated.[1]
Animal Protocol
In vivo xenograft studies All in vivo studies were carried out in accordance with the local guidelines of the Institutional Animal Care and Use Committee. Specific pathogen‐free female CAnN.Cg‐Foxn1nu/CrlCrlj mice (BALB/c nude mice) aged 5 weeks were used. All models were established by s.c. inoculation in the flanks of the mice. NCI‐N87 and MDA‐MB‐468‐Luc models were established by injecting 5 × 106 and 1 × 107 cells suspended in a Matrigel matrix, respectively. After 6 days for NCI‐N87, and 9 days for MDA‐MB‐468‐Luc models, the tumor‐bearing mice were randomized into treatment and control groups based on the tumor volume, and dosing initiated (day 0). Each ADC was given i.v. to the mice at a dose of 3 or 10 mg/kg, and a volume of 10 mL/kg. As a vehicle, ABS buffer (10 mM acetate buffer, 5% sorbitol, pH 5.5) was given at the same volume as the ADCs. The tumor volume was defined as 1/2 × length × width2.[1]
ADME/Pharmacokinetics
Pharmacokinetics in cynomolgus monkeys [3] The plasma DS-8201a concentrations decreased exponentially after a single intravenous administration of DS-8201a. The volume of distribution at steady state (Vss) of DS-8201a and total antibody was close to the plasma volume (data not shown). No clear difference was observed in the pharmacokinetic profile between DS-8201a and the total antibody, indicating that the peptide-linker of DS-8201a is stable in plasma even at DAR 8 (Fig. 2E). A low level of DXd was detected only at the limited time points (Fig. 2E).
Toxicity/Toxicokinetics
Safety profile of DS-8201a [3] A repeated intravenous dosing (every 3 weeks for 3 doses) study was conducted in cynomolgus monkeys, the cross-reactive species for DS-8201a, and in rats (antigen–non-binding species; Table 1). In the rat study, no deaths or life-threatening toxicities were found at dose levels up to 197 mg/kg, the maximum dose. Therefore, the severely toxic dose of 10% in animals (STD10) was considered to be >197 mg/kg. In the monkey study, one female at the highest dose of 78.8 mg/kg was euthanized due to moribundity on day 26. The cause of the moribundity appeared to be the deteriorated condition of the animal, which included decreased body weight and food consumption, as well as bone marrow toxicity and intestinal toxicity. Microscopic findings in the intestines, bone marrow and lungs in the surviving monkeys are shown in Supplementary Table S1. Gastrointestinal toxicity and bone marrow toxicity are typical dose-limiting factors in the clinical use of topoisomerase I inhibitors. The effects of DS-8201a on the intestines were very slight, and severe changes were not pronounced in any animal at up to 78.8 mg/kg. The bone marrow toxicity was produced only at 78.8 mg/kg, and was accompanied by decreases in reticulocyte ratios. No abnormalities in leukocyte and erythrocyte counts were observed in monkeys at 10 and 30 mg/kg. The repeated dose of DS-8201a caused moderate pulmonary toxicity in monkeys at 78.8 mg/kg, and findings graded as slight or very slight after the 6-week recovery period at ≥30 mg/kg. On the basis of the mortality and severity of the findings above, the highest non-severely toxic dose (HNSTD) for monkeys was considered to be 30 mg/kg. DS-8201a was well tolerated at the doses up to 197 mg/kg in rats and 30 mg/kg in monkeys following the repeated administration corresponding to the clinical regimen, and the nonclinical safety profile was acceptable for entry into human trials.
References

[1]. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016 Jul;107(7):1039-46.

[2]. METHOD FOR SELECTIVELY MANUFACTURING ANTIBODY-DRUG CONJUGATE. WO2017002776A1.

[3]. DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clin Cancer Res. 2016 Oct 15;22(20):5097-5108.

Additional Infomation
Antibody-drug conjugates deliver anticancer agents selectively and efficiently to tumor tissue and have significant antitumor efficacy with a wide therapeutic window. DS-8201a is a human epidermal growth factor receptor 2 (HER2)-targeting antibody-drug conjugate prepared using a novel linker-payload system with a potent topoisomerase I inhibitor, exatecan derivative (DX-8951 derivative, DXd). It was effective against trastuzumab emtansine (T-DM1)-insensitive patient-derived xenograft models with both high and low HER2 expression. In this study, the bystander killing effect of DS-8201a was evaluated and compared with that of T-DM1. We confirmed that the payload of DS-8201a, DXd (1), was highly membrane-permeable whereas that of T-DM1, Lys-SMCC-DM1, had a low level of permeability. Under a coculture condition of HER2-positive KPL-4 cells and negative MDA-MB-468 cells in vitro, DS-8201a killed both cells, whereas T-DM1 and an antibody-drug conjugate with a low permeable payload, anti-HER2-DXd (2), did not. In vivo evaluation was carried out using mice inoculated with a mixture of HER2-positive NCI-N87 cells and HER2-negative MDA-MB-468-Luc cells by using an in vivo imaging system. In vivo, DS-8201a reduced the luciferase signal of the mice, indicating suppression of the MDA-MB-468-Luc population; however, T-DM1 and anti-HER2-DXd (2) did not. Furthermore, it was confirmed that DS-8201a was not effective against MDA-MB-468-Luc tumors inoculated at the opposite side of the NCI-N87 tumor, suggesting that the bystander killing effect of DS-8201a is observed only in cells neighboring HER2-positive cells, indicating low concern in terms of systemic toxicity. These results indicated that DS-8201a has a potent bystander effect due to a highly membrane-permeable payload and is beneficial in treating tumors with HER2 heterogeneity that are unresponsive to T-DM1.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C52H56FN9O13
Molecular Weight
1034.099
Exact Mass
1033.39816
CAS #
2270986-87-1
Related CAS #
Exatecan mesylate dihydrate;197720-53-9
PubChem CID
169450545
Appearance
Brown to dark brown solid powder
LogP
-0.4
Hydrogen Bond Donor Count
7
Hydrogen Bond Acceptor Count
15
Rotatable Bond Count
22
Heavy Atom Count
75
Complexity
2360
Defined Atom Stereocenter Count
3
SMILES
CC[C@@]1(C2=C(COC1=O)C(=O)N3CC4=C5[C@@H](CCC6=C5C(=CC(=C6C)F)N=C4C3=C2)NC(=O)COCNC(=O)CNC(=O)[C@H](CC7=CC=CC=C7)NC(=O)CNC(=O)CNC(=O)CCCCCN8C(=O)C=CC8=O)O
InChi Key
WXNSCLIZKHLNSG-WAJAXPBZSA-N
InChi Code
InChI=1S/C52H56FN9O13/c1-3-52(73)33-19-38-48-31(24-62(38)50(71)32(33)25-75-51(52)72)47-35(14-13-30-28(2)34(53)20-36(60-48)46(30)47)58-43(67)26-74-27-57-41(65)22-56-49(70)37(18-29-10-6-4-7-11-29)59-42(66)23-55-40(64)21-54-39(63)12-8-5-9-17-61-44(68)15-16-45(61)69/h4,6-7,10-11,15-16,19-20,35,37,73H,3,5,8-9,12-14,17-18,21-27H2,1-2H3,(H,54,63)(H,55,64)(H,56,70)(H,57,65)(H,58,67)(H,59,66)/t35-,37+,52+/m1/s1
Chemical Name
6-(2,5-dioxopyrrol-1-yl)-N-[2-[[2-[[(2S)-1-[[2-[[2-[[(10S,23R)-10-ethyl-18-fluoro-10-hydroxy-19-methyl-5,9-dioxo-8-oxa-4,15-diazahexacyclo[14.7.1.02,14.04,13.06,11.020,24]tetracosa-1,6(11),12,14,16,18,20(24)-heptaen-23-yl]amino]-2-oxoethoxy]methylamino]-2-oxoethyl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-2-oxoethyl]amino]-2-oxoethyl]hexanamide
Synonyms
(1R)-Deruxtecan; SCHEMBL26807942;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.9670 mL 4.8351 mL 9.6702 mL
5 mM 0.1934 mL 0.9670 mL 1.9340 mL
10 mM 0.0967 mL 0.4835 mL 0.9670 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT04644237 Active, not recruiting Drug: Trastuzumab
deruxtecan
Non-Small Cell Lung Cancer Daiichi Sankyo,Inc. March 19, 2021 Phase 2
NCT04619004 Active, not recruiting Drug: Patritumab
Deruxtecan (Fixed dose)
Non-Small Cell Lung
Cancer Metastatic
Daiichi Sankyo,Inc. February 2, 2021 Phase 2
NCT05458401 Recruiting Drug: Trastuzumab
deruxtecan
HER2-positive Breast Cancer Daiichi Sankyo,Inc. November 11, 2022
Contact Us