yingweiwo

NH2-UAMC1110 TFA

Alias: NH2-UAMC1110 (TFA); NH2-UAMC1110 TFA; 2990021-73-1; S)-6-(4-aminobutoxy)-N-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)quinoline-4-carboxamide 2,2,2-trifluoroacetic acid
Cat No.:V76701 Purity: ≥98%
NH2-UAMC1110 TFA is a UAMC1110 analogue that may be utilized in the synthesis/preparation of FAPI-QS.
NH2-UAMC1110 TFA
NH2-UAMC1110 TFA Chemical Structure CAS No.: 2990021-73-1
Product category: FAP
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes

Other Forms of NH2-UAMC1110 TFA:

  • UAMC1110-NH2
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
NH2-UAMC1110 TFA is a UAMC1110 analogue that may be utilized in the synthesis/preparation of FAPI-QS. UAMC1110 is a fibroblast activation protein (FAP) inhibitor. FAPI-QS is a chelating agent that may be utilized to prepare highly tumor-selective and high-dose radioactive tracers for the diagnosis and treatment of tumors.
Biological Activity I Assay Protocols (From Reference)
Targets
Intermediate for synthesis of FAPI-QS
ln Vitro
Fibroblast activation protein (FAP) is a proline selective serine protease that is overexpressed in tumor stroma and in lesions of many other diseases that are characterized by tissue remodeling. In 2014, a most potent FAP-inhibitor (referred to as UAMC1110) with low nanomolar FAP-affinity and high selectivity toward related enzymes such as prolyl oligopeptidase (PREP) and the dipeptidyl-peptidases (DPPs): DPP4, DPP8/9 and DPP2 were developed. This inhibitor has been adopted recently by other groups to create radiopharmaceuticals by coupling bifunctional chelator-linker systems. Here, we report squaric acid (SA) containing bifunctional DATA5m and DOTA chelators based on UAMC1110 as pharmacophor. The novel radiopharmaceuticals DOTA.SA.FAPi and DATA5m.SA. FAPi with their non-radioactive derivatives were characterized for in vitro inhibitory efficiency to FAP and PREP, respectively and radiochemical investigated with gallium-68. Further, first proof-of-concept in vivo animal study followed by ex vivo biodistribution were determined with [68Ga]Ga-DOTA.SA.FAPi.
Results: [68Ga]Ga-DOTA.SA. FAPi and [68Ga]Ga-DATA5m.SA. FAPi showed high complexation > 97% radiochemical yields after already 10 min and high stability over a period of 2 h. Affinity to FAP of DOTA.SA.FAPi and DATA5m.SA. FAPi and its natGa and natLu-labeled derivatives were excellent resulting in low nanomolar IC50 values of 0.7-1.4 nM. Additionally, all five compounds showed low affinity for the related protease PREP (high IC50 with 1.7-8.7 μM). First proof-of-principle in vivo PET-imaging animal studies of the [68Ga]Ga-DOTA.SA. FAPi precursor in a HT-29 human colorectal cancer xenograft mouse model indicated promising results with high accumulation in tumor (SUVmean of 0.75) and low background signal. Ex vivo biodistribution showed highest uptake in tumor (5.2%ID/g) at 60 min post injection with overall low uptake in healthy tissues.
Conclusion: In this work, novel PET radiotracers targeting fibroblast activation protein were synthesized and biochemically investigated. Critical substructures of the novel compounds are a squaramide linker unit derived from the basic motif of squaric acid, DOTA and DATA5m bifunctional chelators and a FAP-targeting moiety. In conclusion, these new FAP-ligands appear promising, both for further research and development as well as for first human application.[1]
References

[1]. Targeting fibroblast activation protein (FAP): next generation PET radiotracers using squaramide coupled bifunctional DOTA and DATA5m chelators. EJNMMI Radiopharm Chem. 2020 Jul 29;5(1):19.

[2]. Preclinical combination of radiation and fibroblast activation protein inhibition in pancreatic cancer. Journal of Clinical Oncology. 2016, 34 (15).

Additional Infomation
Background: Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibrotic stroma and poor immune infiltrate, in part driven by cancer-associated fibroblasts (CAFs). CAFs contribute to immune escape via sequestration of anti-tumor CD8 T cells, upregulation of immune checkpoint ligand expression, and immunosuppressive cytokine production and polarization of tumor infiltrating immune cells. Methods: We established syngeneic pancreatic tumors in immune competent C57BL/6 mice using Panc02 cells. From day 7-20, mice were treated with fibroblast activation protein (FAP) inhibitor UAMC-1110 or control. Radiation (RT) was delivered exclusively to the tumor using a 1cm collimator on the Small Animal Radiation Research Platform, 10Gy x 3 daily fractions on day 14, 15, and 16. Tumors were measured, and mice followed for survival. Using the same treatment groups above, tumors were harvested for flow cytometry and multiparameter immunofluorescence on day 14, 23 and 43. Results: UAMC-1110 alone had no effect on tumor growth or survival. RT caused a transient growth delay, resulting in a survival advantage. Combination treatment with radiation and UAMC-1110 resulted in two temporally distinct growth delays: an initial tumor growth delay significant over radiation alone at day 22, and a second late response at day 43; but did not translate to a survival advantage over RT. At day 14, UAMC-1110 treatment resulted in fewer intratumoral myeloid cells. At day 23, RT increased CD11b tumor infiltrate, MDSCs, and CD3 infiltrate. Tumors from combination treated mice had increased Gr1HI cells and CD4 T cells, including Tregs. Macrophages increased with UAMC-1110, RT, and combination therapy in an additive manner. While CD8 to CD11b ratio increased with UAMC-1110 treatment, only 3 CD8 T cells were present per 100 myeloid cells. Tumor immune infiltrate was equivalent at day 43. Conclusions: We tested a novel specific FAP inhibitor with radiation in a murine PDAC model. We found FAP inhibition altered tumor immune infiltrate and caused two temporally distinct decreases in tumor growth when combined with RT. Interrogation of tumor immune infiltrate demonstrates alterations in innate and adaptive immune populations.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C23H24F5N5O5
Molecular Weight
545.46
Exact Mass
545.1697
CAS #
2990021-73-1
Related CAS #
NH2-UAMC1110;2758337-19-6
PubChem CID
163197094
Appearance
Off-white to yellow solid powder
SMILES
O=C(N1[C@@H](CC(F)(C1)F)C#N)CNC(C2=CC=NC3=C2C=C(OCCCCN)C=C3)=O.O=C(O)C(F)(F)F
InChi Key
CCMVWHIZASXFHY-UQKRIMTDSA-N
InChi Code
InChI=1S/C21H23F2N5O3.C2HF3O2/c22-21(23)10-14(11-25)28(13-21)19(29)12-27-20(30)16-5-7-26-18-4-3-15(9-17(16)18)31-8-2-1-6-24;3-2(4,5)1(6)7/h3-5,7,9,14H,1-2,6,8,10,12-13,24H2,(H,27,30);(H,6,7)/t14-;/m0./s1
Chemical Name
6-(4-aminobutoxy)-N-[2-[(2S)-2-cyano-4,4-difluoropyrrolidin-1-yl]-2-oxoethyl]quinoline-4-carboxamide;2,2,2-trifluoroacetic acid
Synonyms
NH2-UAMC1110 (TFA); NH2-UAMC1110 TFA; 2990021-73-1; S)-6-(4-aminobutoxy)-N-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)quinoline-4-carboxamide 2,2,2-trifluoroacetic acid
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O :~250 mg/mL (~458.33 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.8333 mL 9.1666 mL 18.3332 mL
5 mM 0.3667 mL 1.8333 mL 3.6666 mL
10 mM 0.1833 mL 0.9167 mL 1.8333 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us