yingweiwo

ADU-S100 enantiomer ammonium salt (MIW815 enantiomer ammonium salt; ML RR-S2 CDA enantiomer ammonium salt)

Alias: MIW815 enantiomer ammonium salt; ADU-S100 enantiomer ammonium salt;ML RR-S2 CDA enantiomer ammonium salt
Cat No.:V77283 Purity: ≥98%
ADU-S100 enantiomer ammonium salt (MIW815 enantiomer ammonium salt) is the less active enantiomer of ADU-S100.
ADU-S100 enantiomer ammonium salt (MIW815 enantiomer ammonium salt; ML RR-S2 CDA enantiomer ammonium salt)
ADU-S100 enantiomer ammonium salt (MIW815 enantiomer ammonium salt; ML RR-S2 CDA enantiomer ammonium salt) Chemical Structure Product category: Others 13
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
Other Sizes

Other Forms of ADU-S100 enantiomer ammonium salt (MIW815 enantiomer ammonium salt; ML RR-S2 CDA enantiomer ammonium salt):

  • ADU-S100 disodium salt
  • ADU-S100 ammonium salt
  • ADU-S100
  • Mal-VC-PAB-(N-Me-amide-C3)-ADU-S100 triethylamine
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
ADU-S100 enantiomer ammonium salt (MIW815 enantiomer ammonium salt) is the less active enantiomer of ADU-S100. ADU-S100 is an activator of stimulator of interferon genes (STING).
Biological Activity I Assay Protocols (From Reference)
Targets
STING
ln Vitro
STING is a transmembrane protein that is found in the endoplasmic reticulum. When cyclic dinucleotides are directly bound to it, the protein changes its conformation, which sets off a chain of events that includes the activation of TBK1, the phosphorylation of IRF-3, and the generation of IFN-β and other cytokines. One potential therapeutic approach to support wide tumor-initiated T cell priming toward tumor antigen repertoire is the direct activation of the STING pathway[1].
References
[1]. Corrales L, et al. Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Rep. 2015 May 19;11(7):1018-30.
Additional Infomation
ADU-S100 (MIW815) is a synthetic cyclic dinucleotide (CDN) agonist (activator) of Stimulator of Interferon Genes (STING), a receptor crucial to activate the innate (endogenous) immune system. ADU-S100 (MIW815) activates all known human and mouse STINGs, and effectively induces the expression of cytokines and chemokines, leading to a robust and durable antigen-specific T-cell mediated immune response against cancer cells. DrugBank STING-activating Cyclic Dinucleotide Agonist MIW815 is a synthetic, cyclic dinucleotide (CDN) and agonist of stimulator of interferon genes protein (STING; transmembrane protein 173; TMEM173), with potential immunomodulating and antineoplastic activities. Upon intratumoral administration, the STING agonist MIW815 binds to STING and stimulates STING-mediated pathways. This activates the immune response through the activation of certain immune cells, including dendritic cells (DCs), which induces the expression of cytokines and chemokines, and leads to an antigen-specific T-cell mediated immune response against cancer cells. STING, a transmembrane protein that activates immune cells in the tumor microenvironment, plays a key role in the activation of the innate immune system.
Spontaneous tumor-initiated T cell priming is dependent on IFN-β production by tumor-resident dendritic cells. On the basis of recent observations indicating that IFN-β expression was dependent upon activation of the host STING pathway, we hypothesized that direct engagement of STING through intratumoral (IT) administration of specific agonists would result in effective anti-tumor therapy. After proof-of-principle studies using the mouse STING agonist DMXAA showed a potent therapeutic effect, we generated synthetic cyclic dinucleotide (CDN) derivatives that activated all human STING alleles as well as murine STING. IT injection of STING agonists induced profound regression of established tumors in mice and generated substantial systemic immune responses capable of rejecting distant metastases and providing long-lived immunologic memory. Synthetic CDNs have high translational potential as a cancer therapeutic.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H30N12O10P2S2
Molecular Weight
724.60
Related CAS #
ADU-S100 disodium salt;1638750-95-4;ADU-S100 ammonium salt;1638750-96-5;ADU-S100;1638241-89-0
Appearance
Typically exists as solid at room temperature
Synonyms
MIW815 enantiomer ammonium salt; ADU-S100 enantiomer ammonium salt;ML RR-S2 CDA enantiomer ammonium salt
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO :~50 mg/mL (~69.00 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (3.45 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (3.45 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (3.45 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.3801 mL 6.9004 mL 13.8007 mL
5 mM 0.2760 mL 1.3801 mL 2.7601 mL
10 mM 0.1380 mL 0.6900 mL 1.3801 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us