Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
Other Sizes |
|
Targets |
Human Endogenous Metabolite
|
---|---|
ln Vitro |
In order to distinguish between IR PCOS and controls, lysophosphatidylcholine 18:2 (1-Linooleoyl-2-Hydroxy-sn-glycero-3-PC) is used. In IR PCOS plasma, there were notable decreases in phosphocholine (PCs) and hemolytic PC (18:2) levels as well as an increase in trilaurin levels [1]. One of the main classes of glycerophospholipids in human plasma is called lysophosphatidylcholine (LPC), and it has been linked to type 2 diabetes, insulin resistance, inflammation, and obesity [2].
|
References |
[1]. Gonzalez-Freire M, et al. Targeted Metabolomics Shows Low Plasma Lysophosphatidylcholine 18:2 Predicts Greater Decline of Gait Speed in Older Adults: The Baltimore Longitudinal Study of Aging. J Gerontol A Biol Sci Med Sci. 2019;74(1):62-67.
[2]. Chen YX, et al. UHPLC/Q-TOFMS-based plasma metabolomics of polycystic ovary syndrome patients with and without insulin resistance. J Pharm Biomed Anal. 2016;121:141-150. |
Additional Infomation |
1-linoleoyl-sn-glycero-3-phosphocholine is a lysophosphatidylcholine 18:2 in which the acyl group at position 1 is (9Z,12Z)-octadecadienoyl. It has a role as a mouse metabolite. It is a lysophosphatidylcholine(18:2/0:0) and a linoleoyl-sn-glycero-3-phosphocholine. It is functionally related to a linoleic acid.
1-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine has been reported in Drosophila melanogaster, Vitis vinifera, and other organisms with data available. |
Molecular Formula |
C26H50NO7P
|
---|---|
Molecular Weight |
519.65
|
Exact Mass |
519.332
|
CAS # |
22252-07-9
|
Related CAS # |
Lysophosphatidylcholine 18:2-d9
|
PubChem CID |
11005824
|
Appearance |
Typically exists as solid at room temperature
|
LogP |
5.982
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
7
|
Rotatable Bond Count |
24
|
Heavy Atom Count |
35
|
Complexity |
623
|
Defined Atom Stereocenter Count |
1
|
SMILES |
CCCCC/C=C\C/C=C\CCCCCCCC(=O)OC[C@H](COP(=O)([O-])OCC[N+](C)(C)C)O
|
InChi Key |
SPJFYYJXNPEZDW-FTJOPAKQSA-N
|
InChi Code |
InChI=1S/C26H50NO7P/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-26(29)32-23-25(28)24-34-35(30,31)33-22-21-27(2,3)4/h9-10,12-13,25,28H,5-8,11,14-24H2,1-4H3/b10-9-,13-12-/t25-/m1/s1
|
Chemical Name |
[(2R)-2-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO :~100 mg/mL (~192.44 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: 2.5 mg/mL (4.81 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: 2.5 mg/mL (4.81 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (4.81 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.9244 mL | 9.6219 mL | 19.2437 mL | |
5 mM | 0.3849 mL | 1.9244 mL | 3.8487 mL | |
10 mM | 0.1924 mL | 0.9622 mL | 1.9244 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.