Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
PEGs/polyethylene glycol
|
---|---|
ln Vitro |
One ligand is for an E3 ubiquitin ligase, and the other is for the target protein; these two ligands are joined by a linker to form PROTACs. The intracellular ubiquitin-proteasome system is utilized by PROTACs to specifically destroy target proteins[1].
|
References |
[1]. An S, et al. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018 Oct;36:553-562
|
Additional Infomation |
There are several challenges towards the development and clinical use of small molecule inhibitors, which are currently the main type of targeted therapies towards intracellular proteins. PROteolysis-TArgeting Chimeras (PROTACs) exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins. Recently, small-molecule PROTACs with high potency have been frequently reported. In this review, we summarize the emerging characteristics of small-molecule PROTACs, such as inducing a rapid, profound and sustained degradation, inducing a robust inhibition of downstream signals, displaying enhanced target selectivity, and overcoming resistance to small molecule inhibitors. In tumor xenografts, small-molecule PROTACs can significantly attenuate tumor progression. In addition, we also introduce recent developments of the PROTAC technology such as homo-PROTACs. The outstanding advantages over traditional small-molecule drugs and the promising preclinical data suggest that small-molecule PROTAC technology has the potential to greatly promote the development of targeted therapy drugs.[1]
|
Molecular Formula |
C9H18O5
|
---|---|
Molecular Weight |
206.236223697662
|
Exact Mass |
206.11542
|
Elemental Analysis |
C, 52.41; H, 8.80; O, 38.79
|
CAS # |
141981-62-6
|
Related CAS # |
Ambrisentan-d10;1046116-27-1
|
PubChem CID |
58885129
|
Appearance |
Typically exists as solid at room temperature
|
LogP |
-0.8
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
5
|
Rotatable Bond Count |
11
|
Heavy Atom Count |
14
|
Complexity |
118
|
Defined Atom Stereocenter Count |
0
|
SMILES |
O(CCOCC=O)CCOCCOC
|
InChi Key |
GAENTWORTZPSLE-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C9H18O5/c1-11-4-5-13-8-9-14-7-6-12-3-2-10/h2H,3-9H2,1H3
|
Chemical Name |
2-[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]acetaldehyde
|
Synonyms |
Methyl-PEG3-Ald; 141981-62-6; 2,5,8,11-Tetraoxatridecan-13-al; 3,6,9,12-Tetraoxatridecanal; mPEG3-CH2CHO; SCHEMBL2571407;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 4.8487 mL | 24.2436 mL | 48.4872 mL | |
5 mM | 0.9697 mL | 4.8487 mL | 9.6974 mL | |
10 mM | 0.4849 mL | 2.4244 mL | 4.8487 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.