Size | Price | Stock | Qty |
---|---|---|---|
500mg |
|
||
1g |
|
||
5g |
|
||
10g |
|
ln Vitro |
NAD+ is a coenzyme made up of pyrophosphate bonds connecting adenosine 5'-phosphate and ribosyl nicotinamide 5'-diphosphate. The oxidized form of NADH is called NAD+ [1]. Widespread throughout nature, NAD+ serves as an electron carrier in numerous enzymatic activities by alternating between oxidation (NAD+) and reduction (Nadide) [2].
|
---|---|
ln Vivo |
Oral NAD+ supplements have been utilized to treat energy-draining, unexplained diseases like fibromyalgia and chronic fatigue syndrome, as well as simple weariness [3].
|
Enzyme Assay |
Redox Titrations Using NADH and NAD+. [3]
NADH was repurified in a glovebox (O2 < 2 ppm) by anion exchange chromatography (5-ml HiTrap Q-Sepharose column) to remove contaminating NAD+. After experimentation, the integrity of the NADH stock solution was reevaluated (0.08 ± 0.04% NAD+ formed in 6 h). Typically, redox potentials were set by using 30 μM NADH and a varying amount of NAD+ (Sigma), and the low potential limit was checked by using the NADH regenerating system. EPR.[3] Complex I (10 mg ml−1) was reduced anaerobically by 1 mM purified NADH or by dialysis against purified NADH (≈−0.4 V) or to ≈−0.3 V by using 1 mM NADH and 10 mM NAD+, and frozen immediately. Spectra were recorded on a Bruker EMX X-band spectrometer by using an ER 4119HS high-sensitivity cavity and a ESR900 continuous-flow liquid helium cryostat [3]. |
References |
|
Additional Infomation |
NAD zwitterion is a NAD. It has a role as a geroprotector. It is functionally related to a deamido-NAD zwitterion. It is a conjugate base of a NAD(+).
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Nadide has been reported in Homo sapiens with data available. Nadide is a dinucleotide of adenine and nicotinamide. It has coenzyme activity in redox reactions and also acts as a donor of ADP-ribose moieties. A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) |
Molecular Formula |
C21H27N7O14P2.3H2O
|
---|---|
Molecular Weight |
717.47
|
Exact Mass |
663.109
|
CAS # |
53-84-9
|
PubChem CID |
5892
|
Appearance |
White to off-white solid powder
|
Melting Point |
140 - 142ºC
|
LogP |
-5.72
|
Hydrogen Bond Donor Count |
7
|
Hydrogen Bond Acceptor Count |
18
|
Rotatable Bond Count |
11
|
Heavy Atom Count |
44
|
Complexity |
1120
|
Defined Atom Stereocenter Count |
8
|
SMILES |
P(=O)(O[H])(OP(=O)([O-])OC([H])([H])[C@]1([H])[C@]([H])([C@]([H])([C@]([H])([N+]2=C([H])C([H])=C([H])C(C(N([H])[H])=O)=C2[H])O1)O[H])O[H])OC([H])([H])[C@]1([H])[C@]([H])([C@]([H])([C@]([H])(N2C([H])=NC3=C(N([H])[H])N=C([H])N=C23)O1)O[H])O[H]
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.3938 mL | 6.9689 mL | 13.9379 mL | |
5 mM | 0.2788 mL | 1.3938 mL | 2.7876 mL | |
10 mM | 0.1394 mL | 0.6969 mL | 1.3938 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.