yingweiwo

Calhex 231

Cat No.:V83422 Purity: ≥98%
Calhex 231
Calhex 231 Chemical Structure CAS No.: 652973-93-8
Product category: CaSR
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Calhex 231 is a potent negative isosteric modulator that blocks (IC50 = 0.39 μM) the increase in [3H]inositol phosphates induced by activation of the human wild-type CaSR transient calcium sensing receptor. Calhex 231 can be used in the study of traumatic hemorrhagic shock (THS) and diabetic cardiomyopathy (DCM).
Biological Activity I Assay Protocols (From Reference)
Targets
CaSR[1] IC50: 0.39 μM (Inositol phosphate)[1]
ln Vitro
Calhex 231 dose-dependently inhibited 10 mM Ca2+-induced IP responses with potency similar to that in WT receptors in T764A (IC50 = 0.28 ± 0.05 μM) and H766A (IC50 = 0.64 ± 0.03 μM) mutant receptors. [1]. Calhex 231 treatment significantly down-regulates the expression of CaSR, α-SMA, Col-I/III, and MMP2/9. Calhex 231 attenuates high glucose-induced cardiac fibrosis in cardiac fibroblasts [2]. Calhex 231 is able to inhibit Itch (atrofen-1-interacting protein 4)-ubiquitin proteasome and TGF-β1/ Smads pathway, then inhibits the proliferation of cardiac fibroblasts, reduces collagen deposition, and alleviates high glucose-induced myocardial fibrosis [2].
ln Vivo
Calhex 231 (4.07 mg/kg (10 µmol/kg); intraperitoneal injection; once daily; for 12 weeks; male Wistar rats) treatment reduces diabetic myocardial fibrosis in rats with type 1 diabetes (T1D)[2]. Calhex-231 (Cal, 0.1-1 mg/kg) has an ameliorative effect on traumatic hemorrhagic shock by improving vascular hyporesponsiveness and reducing mitochondrial dysfunction[1].
Cell Assay
Cell Proliferation Assay[2]
Cell Types: Primary neonatal rat cardiac fibroblasts (CFs).
Tested Concentrations: 3 µM.
Incubation Duration: 24 hours.
Experimental Results: Significantly decreased the proliferation of cardiac fibroblasts.
Animal Protocol
Animal/Disease Models: Male Wistar rats (8 weeks old) injected with Streptozotocin[2]
Doses: 4.07 mg/kg (10 µmoL/kg).
Route of Administration: Intraperitoneal injection; daily; for 12 weeks.
Experimental Results: Ameliorated diabetic myocardial fibrosis in T1D rats.

Animal/Disease Models: Four hundred and fifty Sprague-Dawley (SD) rats (half male and half female)[3].
Doses: 0.1, 1, or 5 mg/kg.
Route of Administration: A continuous infusion.
Experimental Results: In all groups, MAP, LVSP, and ±dp/dtmax decreased significantly after shock. Administration of 5 or 1 mg/kg Cal resulted in significantly increased values at 1 and 2 hr postadministration, compared to rats in the LR only group (or 0.01). Rats treated with 1 mg/kg Cal demonstrated the greatest recovery. LR infusion induced short-term and slightly increase of blood pressor in normal rats. Cal (1 mg/kg) without LR infusion did not restore the decreased MAP after shock.
References

[1].Modeling and mutagenesis of the binding site of Calhex 231, a novel negative allosteric modulator of the extracellular Ca(2+)-sensing receptor. J Biol Chem. 2003 Dec 5;278(49):49487-94.

[2].Modeling and mutagenesis of the binding site of Calhex 231, a novel negative allosteric modulator of the extracellular Ca(2+)-sensing receptor. J Biol Chem. 2003 Dec 5;278(49):49487-94.

[3].The Calcilytic Drug Calhex-231 Ameliorates Vascular Hyporesponsiveness in Traumatic Hemorrhagic Shock by Inhibiting Oxidative Stress and miR-208a-Mediated Mitochondrial Fission. Oxid Med Cell Longev. 2020 Dec 3:2020:4132785.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H27CLN2O
Molecular Weight
406.95
Exact Mass
406.181
CAS #
652973-93-8
PubChem CID
11849514
Appearance
Typically exists as solid at room temperature
Density
1.21g/cm3
Boiling Point
597.091ºC at 760 mmHg
Melting Point
53-55ºC
Flash Point
314.91ºC
Index of Refraction
1.638
LogP
6.666
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
5
Heavy Atom Count
29
Complexity
533
Defined Atom Stereocenter Count
3
SMILES
C[C@H](C1=CC=CC2=CC=CC=C21)N[C@H]3CCCC[C@@H]3NC(=O)C4=CC=C(C=C4)Cl
InChi Key
YTFUQWWKTIWYEY-CQLNOVPUSA-N
InChi Code
InChI=1S/C25H27ClN2O/c1-17(21-10-6-8-18-7-2-3-9-22(18)21)27-23-11-4-5-12-24(23)28-25(29)19-13-15-20(26)16-14-19/h2-3,6-10,13-17,23-24,27H,4-5,11-12H2,1H3,(H,28,29)/t17-,23+,24+/m1/s1
Chemical Name
4-chloro-N-[(1S,2S)-2-[[(1R)-1-naphthalen-1-ylethyl]amino]cyclohexyl]benzamide
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
Typically soluble in DMSO (e.g. 10 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4573 mL 12.2865 mL 24.5730 mL
5 mM 0.4915 mL 2.4573 mL 4.9146 mL
10 mM 0.2457 mL 1.2287 mL 2.4573 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us