Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
TOPK
|
---|---|
References | |
Additional Infomation |
TOPK (T-lymphokine-activated killer cell-originated protein kinase) is highly and frequently transactivated in various cancer tissues, including lung and triple-negative breast cancers, and plays an indispensable role in the mitosis of cancer cells. We report the development of a potent TOPK inhibitor, OTS964 {(R)-9-(4-(1-(dimethylamino)propan-2-yl)phenyl)-8-hydroxy-6-methylthieno[2,3-c]quinolin-4(5H)-one}, which inhibits TOPK kinase activity with high affinity and selectivity. Similar to the knockdown effect of TOPK small interfering RNAs (siRNAs), this inhibitor causes a cytokinesis defect and the subsequent apoptosis of cancer cells in vitro as well as in xenograft models of human lung cancer. Although administration of the free compound induced hematopoietic adverse reactions (leukocytopenia associated with thrombocytosis), the drug delivered in a liposomal formulation effectively caused complete regression of transplanted tumors without showing any adverse reactions in mice. Our results suggest that the inhibition of TOPK activity may be a viable therapeutic option for the treatment of various human cancers.[1]
Multiple myeloma (MM) continues to be considered incurable, necessitating new drug discovery. The mitotic kinase T-LAK cell-originated protein kinase/PDZ-binding kinase (TOPK/PBK) is associated with proliferation of tumor cells, maintenance of cancer stem cells, and poor patient prognosis in many cancers. In this report, we demonstrate potent anti-myeloma effects of the TOPK inhibitor OTS514 for the first time. OTS514 induces cell cycle arrest and apoptosis at nanomolar concentrations in a series of human myeloma cell lines (HMCL) and prevents outgrowth of a putative CD138+ stem cell population from MM patient-derived peripheral blood mononuclear cells. In bone marrow cells from MM patients, OTS514 treatment exhibited preferential killing of the malignant CD138+ plasma cells compared with the CD138- compartment. In an aggressive mouse xenograft model, OTS964 given orally at 100 mg/kg 5 days per week was well tolerated and reduced tumor size by 48%-81% compared to control depending on the initial graft size. FOXO3 and its transcriptional targets CDKN1A (p21) and CDKN1B (p27) were elevated and apoptosis was induced with OTS514 treatment of HMCLs. TOPK inhibition also induced loss of FOXM1 and disrupted AKT, p38 MAPK, and NF-κB signaling. The effects of OTS514 were independent of p53 mutation or deletion status. Combination treatment of HMCLs with OTS514 and lenalidomide produced synergistic effects, providing a rationale for the evaluation of TOPK inhibition in existing myeloma treatment regimens.[2] |
Molecular Formula |
C21H20N2O2S
|
---|---|
Molecular Weight |
364.46
|
Exact Mass |
364.12
|
Elemental Analysis |
C, 62.91; H, 5.28; Cl, 8.84; N, 6.99; O, 7.98; S, 8.00
|
CAS # |
1338541-25-5
|
Appearance |
Typically exists as solid at room temperature
|
LogP |
3.25
|
InChi Key |
OETLNMOJNONWOY-LBPRGKRZSA-N
|
InChi Code |
InChI=1S/C21H20N2O2S/c1-11-9-16(24)17(14-5-3-13(4-6-14)12(2)10-22)18-15-7-8-26-20(15)21(25)23-19(11)18/h3-9,12,24H,10,22H2,1-2H3,(H,23,25)/t12-/m0/s1
|
Chemical Name |
(R)-9-(4-(1-aminopropan-2-yl)phenyl)-8-hydroxy-6-methylthieno[2,3-c]quinolin-4(5H)-one
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : 31.43 mg/mL (86.24 mM; adjust pH to 3 with 1 M HCL)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.7438 mL | 13.7189 mL | 27.4379 mL | |
5 mM | 0.5488 mL | 2.7438 mL | 5.4876 mL | |
10 mM | 0.2744 mL | 1.3719 mL | 2.7438 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.