yingweiwo

Alprostadil ethyl ester

Alias: Prostaglandin E1 ethyl ester; 35900-16-4; PGE1 ethyl ester; IG6WR57RZT; Prost-13-en-1-oic acid, 11,15-dihydroxy-9-oxo-, ethyl ester, (11alpha,13E,15S)-; ethyl 7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoate; UNII-IG6WR57RZT;
Cat No.:V29446 Purity: ≥98%
Alprostadil ethyl ester is an esterified form and ethyl ester analog of prostaglandin E1 (PGE1) that can beused in the treatment of scleroderma.
Alprostadil ethyl ester
Alprostadil ethyl ester Chemical Structure CAS No.: 35900-16-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
10mg
25mg
50mg

Other Forms of Alprostadil ethyl ester:

  • Alprostadil (PGE1; Prostaglandin-E1)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Alprostadil ethyl ester is an esterified form and ethyl ester analog of prostaglandin E1 (PGE1) that can be used in the treatment of scleroderma.

Biological Activity I Assay Protocols (From Reference)
Targets
Vasodilator
ln Vitro
Alprostadil increased the cell viability of LPS-stimulated H9c2 cells, reduced LDH and troponin production, and attenuated IL-1β, IL-6, IL-17, and TNF-α secretion. Moreover, alprostadil reduced the mRNA expression of Wnt5a, JNK, and NF-κB and decreased the expression of Wnt5a, NF-κB, and the ratio of p‑JNK/JNK in H9c2 cells treated with LPS. The siWnt5a or JNK inhibitor SP600125 significantly augmented the inhibitory effects of alprostadil on the Wnt5a/JNK/NF-κB pathway[1].
ln Vivo
Compared with Sham group, the rats in CLP group had substantially elevated content of serum liver function markers, increased apoptotic liver cells, upregulated levels of oxidative stress, enhanced activity of the TLR4/NF-κB pathway, and increased release of TNF-α (p<0.05). Meanwhile, there were evident pathological changes under microscopic examination in CLP group compared with Sham group (p<0.05). In comparison with CLP group, Alp group exhibited significantly decreased concentrations of liver function markers, microscopic findings, such as decreased inflammatory cell infiltration in the interstitum, notably lowered proportion of apoptotic cells, decreased level of oxidative stress, weakened activity of the TLR4/NF-κB pathway and restrained release of TNF-α (p<0.05). Furthermore, normal morphology of liver cells was observed in Alp group compared with CLP group (p<0.05)[2].
Cell Assay
Cell morphology was observed under an inverted light microscope, while cell viability was assessed with the 3‑(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. Enzyme-linked immunosorbent assays (ELISA) were conducted to study biochemical indicators of cellular damage, such as released lactate dehydrase (LDH) and troponin, and inflammatory cytokine levels including interleukin-1β (IL-1β), IL-6, IL-17, and tumor necrosis factor-α (TNF-α). The mRNA expression levels of Wnt5a, c‑jun N‑terminal kinase (JNK), and nuclear factor kappa B (NF-κB) were further investigated by real-time quantitative polymerase chain reaction (RT-PCR). The effects of alprostadil on the Wnt5a/JNK/NF-κB pathway in H9c2 cells was examined by Western blotting[1].
Animal Protocol
Objective: The aim of this study was to explore the role of alprostadil (Alp) in cecal ligation and puncture (CLP)-induced septic injury in rats and its possible mechanism of action.[2]
Materials and methods: Wistar rats were randomly assigned into three groups, including: Sham group (no CLP was performed), CLP group (CLP was conducted) and Alp group (Alp was injected after CLP). Serum liver function markers, pathological changes in liver tissues, alterations in the level of oxidative stress, activity of the Toll-like receptor 4 (TLR4)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, and release of inflammatory factor tumor necrosis factor alpha (TNF-α) in the liver tissue homogenate were detected in each group.[2]
References
[1].Alprostadil attenuates LPS-induced cardiomyocyte injury by inhibiting the Wnt5a/JNK/NF-κB pathway. Herz. 2020; 45(Suppl 1): 130–138.
[2]. Alprostadil alleviates liver injury in septic rats via TLR4/NF-κB pathway. https://pubmed.ncbi.nlm.nih.gov/33629328/
[3]. Stability of Alprostadil in 0.9% Sodium Chloride Stored in Polyvinyl Chloride Containers. Int J Pharm Compd. 2017 Mar-Apr;21(2):150-153.
Additional Infomation
The stability of alprostadil diluted in 0.9% sodium chloride stored in polyvinyl chloride (VIAFLEX) containers at refrigerated temperature, protected from light, is reported. Five solutions of alprostadil 11 mcg/mL were prepared in 250 mL 0.9% sodium chloride polyvinyl chloride (PL146) containers. The final concentration of alcohol was 2%. Samples were stored under refrigeration (2°C to 8°C) with protection from light. Two containers were submitted for potency testing and analyzed in duplicate with the stability-indicating high-performance liquid chromatography assay at specific time points over 14 days. Three containers were submitted for pH and visual testing at specific time points over 14 days. Stability was defined as retention of 90% to 110% of initial alprostadil concentration, with maintenance of the original clear, colorless, and visually particulate-free solution. Study results reported retention of 90% to 110% initial alprostadil concentration at all time points through day 10. One sample exceeded 110% potency at day 14. pH values did not change appreciably over the 14 days. There were no color changes or particle formation detected in the solutions over the study period. This study concluded that during refrigerated, light-protected storage in polyvinyl chloride (VIAFLEX) containers, a commercial alcohol-containing alprostadil formulation diluted to 11 mcg/mL with 0.9% sodium chloride 250 mL was stable for 10 days.[3]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H38O5
Molecular Weight
382.53412
Exact Mass
382.27191
Elemental Analysis
C, 69.08; H, 10.01; O, 20.91
CAS #
35900-16-4
Related CAS #
745-65-3 (free acid); 217182-28-0 (isopropyl ester); 27930-45-6 (sodium); 35900-16-4 (ethyl ester)
PubChem CID
9800148
Appearance
Typically exists as solids (or liquids in special cases) at room temperature
Density
1.1±0.1 g/cm3
Boiling Point
498.6±45.0 °C at 760 mmHg
Flash Point
160.9±22.2 °C
Vapour Pressure
0.0±2.9 mmHg at 25°C
Index of Refraction
1.524
LogP
3.24
tPSA
83.830
SMILES
CCCCC[C@@H](/C=C/[C@@H]1[C@@H](CCCCCCC(=O)OCC)C(=O)C[C@H]1O)O
InChi Key
LVDCZROIKIHUKJ-QZCLESEGSA-N
InChi Code
1S/C22H38O5/c1-3-5-8-11-17(23)14-15-19-18(20(24)16-21(19)25)12-9-6-7-10-13-22(26)27-4-2/h14-15,17-19,21,23,25H,3-13,16H2,1-2H3/b15-14+/t17-,18+,19+,21+/m0/s1
Chemical Name
Prost-13-en-1-oic acid, 11,15-dihydroxy-9-oxo-, ethyl ester, (11alpha,13E,15S)-
Synonyms
Prostaglandin E1 ethyl ester; 35900-16-4; PGE1 ethyl ester; IG6WR57RZT; Prost-13-en-1-oic acid, 11,15-dihydroxy-9-oxo-, ethyl ester, (11alpha,13E,15S)-; ethyl 7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoate; UNII-IG6WR57RZT;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6142 mL 13.0709 mL 26.1417 mL
5 mM 0.5228 mL 2.6142 mL 5.2283 mL
10 mM 0.2614 mL 1.3071 mL 2.6142 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us