yingweiwo

PS-48

Alias: PS-48; PS 48; (Z)-5-(4-Chlorophenyl)-3-phenylpent-2-enoic acid; PS-48; (2z)-5-(4-Chlorophenyl)-3-Phenylpent-2-Enoic Acid; (2Z)-5-(4-Chlorophenyl)-3-phenyl-2-pentenoic acid; CHEMBL539134; PS48
Cat No.:V4065 Purity: ≥98%
PS-48 is an allosteric modulator/activator of the phosphoinositide-dependent protein kinase-1 (PDK1) with Kdof 10.3μM.
PS-48
PS-48 Chemical Structure CAS No.: 1180676-32-7
Product category: PDPK1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

PS-48 is an allosteric modulator/activator of the phosphoinositide-dependent protein kinase-1 (PDK1) with Kd of 10.3 μM. It binds exclusively to the PIF-binding pocket of PDK1, which is distinct from the conserved ATP binding site. The activation of AKT/PKB and numerous other AGC kinases, such as PKC, S6K, and SGK, depends on the master kinase PDPK1. In the signaling pathways triggered by a number of growth factors and hormones, including insulin signaling, PDPK1 plays a significant role.

Biological Activity I Assay Protocols (From Reference)
Targets
PDPK1
ln Vitro
The PDK1 agonist PS48 has the power to enhance the osteogenic capacity of dexamethasone-treated MC3T3-E1 cells. In MC3T3-E1 cells treated with dexamethasone after PS48 treatment, the protein levels of p-AKT and p-mTOR are elevated. [2]
PS48 binding to PDK1 characterized by ITC[1]
The binding properties of PS48 and its analog compound PS08 (4) to PDK150–359 Y288G Q292A were determined by isothermal titration calorimetry (ITC) at 20 °C (Table 1 and Supplementary Fig. 2). Both compounds bound to PDK150–359 with a 1:1 stoichiometry and a binding affinity in the micromolar range (PS48, Kd = 10.3 μM; PS08, Kd = 6.2 M). The close resemblance of the compounds and their thermodynamic parameters, ΔH, ΔG and TΔS (Table 1), suggested a similar binding mechanism. In both cases, binding was both enthalpy and entropy favorable and driven by the entropy term (ΔH/ΔG = 27.1% and 25.0%, respectively; Table 1)[1].
ln Vivo
In vivo, the PDK1 agonist PS48 can maintain the bone mass of mice treated with dexamethasone.[2]
Double transgenic APPsw/PSENdE9 mice, a model for Alzheimer's disease, were used to test the oral administration of PS48, a PDK-1 agonist, on preventing the expected decline in learning and memory in the Morris Water Maze (MWM). Mice were raised on either standard (SD) or high fat (HFD) diets, dosed beginning 10 months age and tested at an advanced age of 14 months. PS48 had positive effects on learning the spatial location of a hidden platform in the TG animals, on either SD or HFD, compared to vehicle diet and WT animals. On several measures of spatial memory following successful acquisition (probe trials), the drug also proved significantly beneficial to animals on either diet. The PS48 treatment-effect size was more pronounced in the TG animals on HFD compared to on SD in several of the probe measures. HFD produced some of the intended metabolic effects of weight gain and hyperglycemia, as well as accelerating cognitive impairment in the TG animals. PS48 was found to have added value in modestly reducing body weights and improving OGTT responses in TG groups although results were not definitive. PS48 was well tolerated without obvious clinical signs or symptoms and did not itself affect longevity. These results recommend a larger preclinical study before human trial[3].
Enzyme Assay
Isothermal titration calorimetry.[1]
Calorimetric titrations were performed using the VP-ITC instrument as previously described with minor modifications as detailed in the Supplementary Methods.
Protein kinase activity tests.[1]
Protein kinase activity tests were performed essentially as previously described8,28 using T308tide as a substrate for PDK1. Further information is detailed in the Supplementary Methods.
Probing the conformation of the ATP binding site in PDK1.[1]
The activation of PDK1 by HM-polypeptides and small compounds is due to a change in the conformation of the enzyme. We probed the conformation of the ATP binding site in PDK1 by scanning the steady state fluorescence of TNP-ATP/PDK1 in the presence or absence of P-HM-polypeptides, PIFtide or low-molecular-weight compounds. Data were obtained in a Varian Cary Eclipse spectrofluorometer (excitation λ = 479 nm; emission scanning λ = 500–600 nm; excitation slit = 10 nm; emission slit = 10 nm) at a rate of 200 nm min−1, with 150 data points per 100 nm scanning and 0.3 s averaging time. Further information is detailed in the Supplementary Methods.
Cell Assay
MC3T3-E1 cells are cultured in an osteogenic differentiation medium containing 4 mM glycerophosphate and 25 g/mL ascorbic acid until 70% confluency. The osteogenic differentiation medium is then supplemented for 14 days with dexamethasone (final ethanol concentration, 0.01%, vol/vol) at various concentrations. Every two days, the culture medium is changed. Dexamethasone 107 M culture medium supplemented with or without PS48 (5 M) is used to cultivate MC3T3-E1 cells.
Animal Protocol
Drug formulation and delivery[3]
In preliminary toxicity and tolerability studies, normal adult C7/Bl6 mice were dosed for 2 weeks, one cohort by oral gavage and another intravenous. PS48 was solubilized in 100% DMSO, then diluted in corn oil to a final DMSO of 5%. Daily gavage of drug (1 mg/Kg and 50 mg/Kg) amounted to 12.5 microliter DMSO per 50 gm mouse. In the other assessment, mice were injected through the tail vein with PS48, titrating to a max dose of 20 mg/Kg. Daily weights and general activity were recorded and necropsy included liver and muscle enzyme levels.[3]
PS48was dosed orally for the clinical study of cognition in 2xTG mice beginning age week 44. Drug delivered via SD and HFD proceeded in two ways, in order to insure the full daily drug dose was ingested while providing for equivalent total kcal intake. In the mice on SD, the drug was administered in a cookie dough treat (or supplement) that was preferred over SD and always finished, so that consumption could be easily tracked. Mice were also housed individually during dough dosing to monitor complete ingestion. Thus, 1/2 of daily food consumption (∼3 g) was dough/drug and 1/2 SD food pellets. After mixing the drug/vehicle-corn oil emulsion (50 microliter) into the dough (1/20 v/v), it was partitioned into silicone candy molds (1.3 cc/well) and frozen until use within 1 week (each morsel ∼1.5 gm). The HFD, found by us to be preferred by the animals, even over cookie dough, had a softer consistency to begin with and could therefore be simply ground and mixed with compound (or Vehicle) emulsified in corn oil/5% DMSO. It was then reformed into 5-gram pellets and dried to be suitable for the hopper. The average daily food intake in the HFD-V group was 3.2 g and in the HFD-PS48 was 3.3 g.[3]
Mice were dosed 50 mg PS48/Kg/day. Based on a mean adult transgenic (2xTG) mouse weight of 46 g, the daily dose of PS48 was 2.3 mg. Based on a mean WT mouse weight of 41 g, the daily dose was 2.0 mg. No further adjustments based on weight differences between the groups occurring over time were made. The duration of drug therapy from outset through the end of cognitive testing was just over 4 months.
References

[1]. Nat Chem Biol. 2009 Oct;5(10):758-64.

[2]. Front Endocrinol (Lausanne). 2020 Jan 28;10:922.

[3]. Behav Brain Res. 2023 Feb 13:438:114183.

Additional Infomation
Protein phosphorylation transduces a large set of intracellular signals. One mechanism by which phosphorylation mediates signal transduction is by prompting conformational changes in the target protein or interacting proteins. Previous work described an allosteric site mediating phosphorylation-dependent activation of AGC kinases. The AGC kinase PDK1 is activated by the docking of a phosphorylated motif from substrates. Here we present the crystallography of PDK1 bound to a rationally developed low-molecular-weight activator and describe the conformational changes induced by small compounds in the crystal and in solution using a fluorescence-based assay and deuterium exchange experiments. Our results indicate that the binding of the compound produces local changes at the target site, the PIF binding pocket, and also allosteric changes at the ATP binding site and the activation loop. Altogether, we present molecular details of the allosteric changes induced by small compounds that trigger the activation of PDK1 through mimicry of phosphorylation-dependent conformational changes.[1]
Long-term and high dose glucocorticoid treatment can cause decreased viability and function of osteoblasts, which leads to osteoporosis and osteonecrosis. In this study, we investigated the role and mechanism of action of HIF-1α in glucocorticoid-induced osteogenic inhibition in MC3T3-E1 cells. Our results showed that HIF-1α protein expression was reduced when MC3T3-E1 cells were exposed to dexamethasone (Dex) at varying concentrations ranging from 10-9 to 10-6 M. PDK1 expression was also decreased in MC3T3-E1 cells after dexamethasone treatment. MC3T3-E1 cells when treated with the glucocorticoid receptor antagonist RU486 along with dexamethasone showed enhanced HIF-1α expression. In addition, upregulated expression of HIF-1α was capable of promoting the osteogenic ability of MC3T3-E1 cells and PDK1 expression. However, the HIF-1α antagonist 2-methoxyestradiol (2-ME) had a reverse effect in MC3T3-E1 cells exposed to dexamethasone. Furthermore, the PDK1 antagonist dichloroacetate could repress the osteogenic ability of MC3T3-E1 cells, although HIF-1α was upregulated when transduced with adenovirus-HIF-1α construct. The PDK1 agonist PS48 was able to promote the osteogenic ability of MC3T3-E1 cells treated with dexamethasone. Importantly, the protein levels of p-AKT and p-mTOR were increased in MC3T3-E1 cells treated with dexamethasone after PS48 treatment. in vivo, the PDK1 agonist PS48 could maintain the bone mass of mice treated with dexamethasone. This study provides a new understanding of the mechanism of glucocorticoid-induced osteoporosis.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C17H15CLO2
Molecular Weight
286.75
Exact Mass
286.076
Elemental Analysis
C, 71.21; H, 5.27; Cl, 12.36; O, 11.16
CAS #
1180676-32-7
Related CAS #
1180676-32-7
PubChem CID
44141940
Appearance
White to off-white solid powder
Density
1.2±0.1 g/cm3
Boiling Point
444.1±24.0 °C at 760 mmHg
Flash Point
222.4±22.9 °C
Vapour Pressure
0.0±1.1 mmHg at 25°C
Index of Refraction
1.609
LogP
5.59
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
5
Heavy Atom Count
20
Complexity
337
Defined Atom Stereocenter Count
0
SMILES
O=C(O)/C=C(C1=CC=CC=C1)/CCC2=CC=C(Cl)C=C2
InChi Key
LLJYFDRQFPQGNY-QINSGFPZSA-N
InChi Code
InChI=1S/C17H15ClO2/c18-16-10-7-13(8-11-16)6-9-15(12-17(19)20)14-4-2-1-3-5-14/h1-5,7-8,10-12H,6,9H2,(H,19,20)/b15-12-
Chemical Name
(Z)-5-(4-chlorophenyl)-3-phenylpent-2-enoic acid
Synonyms
PS-48; PS 48; (Z)-5-(4-Chlorophenyl)-3-phenylpent-2-enoic acid; PS-48; (2z)-5-(4-Chlorophenyl)-3-Phenylpent-2-Enoic Acid; (2Z)-5-(4-Chlorophenyl)-3-phenyl-2-pentenoic acid; CHEMBL539134; PS48
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~57 mg/mL (~198.8 mM)
Ethanol: ~57 mg/mL (~198.8 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (8.72 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (8.72 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (8.72 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.4874 mL 17.4368 mL 34.8736 mL
5 mM 0.6975 mL 3.4874 mL 6.9747 mL
10 mM 0.3487 mL 1.7437 mL 3.4874 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT05546385 Recruiting Device: Sham breathing device
Device: Partial Rebreathing Device
Migraine With Aura Rehaler June 16, 2023
Contact Us