yingweiwo

Puromycin (CL13900)

Alias: Puromycin; Puromycine; NSC-3055; NSC3055; Stylomycin; Puromicina; Puromycine; Puromycinum; Stillomycin; P-638; NSC 3055
Cat No.:V13380 Purity: ≥98%
Puromycin (CL13900), an analog of aminoacyl-tRNA (anaminonucleoside), is a potent antibiotic which acts as a protein synthesis inhibitor.
Puromycin (CL13900)
Puromycin (CL13900) Chemical Structure CAS No.: 53-79-2
Product category: Antibiotics
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes

Other Forms of Puromycin (CL13900):

  • Puromycin 2HCl (CL13900)
  • Puromycin Aminonucleoside (NSC-3056)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Puromycin (CL13900), an analog of aminoacyl-tRNA (anaminonucleoside), is a potent antibiotic which acts as a protein synthesis inhibitor. It inhibits the incorporation of aminoacyl-tRNA into the C-terminal on a synthesizing polypeptide, resulting in the premature termination of the polypeptide chain. Puromycin is toxic to the growth of various eukaryote cells including mammalian cells. Concentrations of puromycin sufficient to inhibit the cell growth of mammalian cells range from 0.5-10 μg/ml. IC90s for puromycin to inhibit the growth of Plasmodium falciparum and Giardia lamblia are 60 ng/ml and 54 μg/ml, respectively.

Biological Activity I Assay Protocols (From Reference)
Targets
Protein synthesis
ln Vitro
Puromycin causes the accumulation of small peptides while preventing the synthesis of proteins following the formation of aminoacyl-sRNA. The release of partial peptide chains as a consequence of the splitting of ribosome-bound peptidyl-sRNA4 appears to be the cause of both of these effects. [1]. An analog of the 3' end of aminoacyl-tRNA, puromycin links non-specifically to expanding polypeptide chains, causing premature termination of translation. Puromycin inhibits growth in two different ways. The first way is by serving as an acceptor substrate and attacking the P site's peptidyl-tRNA to create a developing peptide. The second method involves binding to the A' site in competition with aminoacyl-tRNA[2]. Puromycin incorporation in neosynthesized proteins, when used in small quantities, directly correlates with the rate of mRNA translation in vitro. There are benefits to using puromycin immunodetection instead of radioactive amino acid labeling. By using immunofluorescence microscopy on individual cells and fluorescence-activated cell sorting on heterogeneous cell populations, it enables the direct assessment of translation activity[3].
ln Vivo
In animals of 25 days old, 180 or 120 min of previous exposure to puromycin dihydrochloride inhibited subsequent amino acid transport. In animals of 50 days old, however, puromycin dihydrochloride failed to inhibit α-aminoisobutyric acid uptake.
Enzyme Assay
Puromycin, an analog of the 3' end of aminoacyl-tRNA, causes premature termination of translation by being linked non-specifically to growing polypeptide chains. Here we report the interesting phenomenon that puromycin acting as a non-inhibitor at very low concentration (e.g. 0.04 microM) can bond only to full-length protein at the C-terminus. This was proved by using a carboxypeptidase digestion assay of the products obtained by Escherichia coli cell-free translation of human tau 4 repeat (tau4R) mRNA in the presence of low concentrations of puromycin or its derivatives. The tau4R mRNA was modified to code for three C-terminal methionines, which were radioactively labeled, followed by a stop codon. The translation products could not be digested by carboxy-peptidase if puromycin or a derivative was present at the C-terminus of full-length tau4R. Puromycin and its derivatives at 0. 04-1.0 microM bonded to 7-21% of full-length tau4R, depending on the ability to act as acceptor substrates. Furthermore, the bonding efficiency of a puromycin derivative to tau4R was decreased by addition of release factors. These results suggest that puromycin and its derivatives at concentrations lower than those able to compete effectively with aminoacyl-tRNA can bond specifically to full-length protein at a stop codon. This specific bonding of puromycin to full-length protein should be useful for in vitro selection of proteins and for in vitro and in vivo C-terminal end protein labeling[2].
Cell Assay
When treated with puromycin dihydrochloride at different concentrations, the growth rates of T. thermophila changed. In the first 24 h, puromycin dihydrochloride at a concentration of 50 µg/ml reduced the growth rate by 80%, but did not completely block the cell growth; until 72 h, there was a gradual cell number increase. At 100 μg/ml, puromycin dihydrochloride completely blocked the cell growth; in the first 48 h under this condition, almost all of the cells died, surviving cells grew rapidly after 48 h. Puromycin dihydrochloride at 150 μg/ml completely inhibited the cell growth for 72 h. By 72 h, the majority of cells died, and then surviving cells grew. Puromycin dihydrochloride at 200 μg/ml made almost all the cells die by 48 h, and hence no survivors appeared.
References
[1]. Proc Natl Acad Sci U S A. 1964 Apr;51:585-92.
[2]. Nucleic Acids Res. 2000 Mar 1;28(5):1176-82.
[3]. Nat Methods. 2009 Apr;6(4):275-7.
[4]. Pharmacol Rev.1964 Sep;16:223-43.
[5]. Biol Reprod.2005 Feb;72(2):309-15.
Additional Infomation
Puromycin dihydrochloride is a white powder.
Puromycin is an aminonucleoside antibiotic, derived from the Streptomyces alboniger bacterium, that causes premature chain termination during translation taking place in the ribosome. It has a role as a nucleoside antibiotic, an antiinfective agent, an antineoplastic agent, a protein synthesis inhibitor, an antimicrobial agent, an EC 3.4.11.14 (cytosol alanyl aminopeptidase) inhibitor and an EC 3.4.14.2 (dipeptidyl-peptidase II) inhibitor. It is a conjugate base of a puromycin(1+).
Puromycin is an antibiotic that prevents bacterial protein translation. It is utilized as a selective agent in laboratory cell cultures. Puromycin is toxic to both prokaryotic and eukaryotic cells, resulting in significant cell death at appropriate doses.
Puromycin is a natural product found in Streptomyces anthocyanicus, Apis cerana, and other organisms with data available.
Puromycin is an aminoglycoside antibiotic isolated from the bacterium Streptomyces alboniger. Acting as an analog of the 3' terminal end of aminoacyl-tRNA, puromycin incorporates itself into a growing polypeptide chain and causes its premature termination, thereby inhibiting protein synthesis. This agent has antimicrobial, antitrypanosomal, and antineoplastic properties; it is used as an antibiotic in cell culture.
A cinnamamido ADENOSINE found in STREPTOMYCES alboniger. It inhibits protein synthesis by binding to RNA. It is an antineoplastic and antitrypanosomal agent and is used in research as an inhibitor of protein synthesis.
PUROMYCIN DIHYDROCHLORIDE is sensitive to prolonged exposure to heat. Behaves as a very weak acid in solution.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H29N7O5
Molecular Weight
471.52
Exact Mass
471.223
Elemental Analysis
C, 56.04; H, 6.20; N, 20.79; O, 16.97
CAS #
53-79-2
Related CAS #
53-79-2;58-58-2;58-60-6;53-79-2;Puromycin hydrochloride
Appearance
Typically exists as solids (or liquids in special cases) at room temperature
Density
1.5±0.1 g/cm3
Melting Point
175.5-177ºC
Index of Refraction
1.701
LogP
0.93
tPSA
160.88
SMILES
OC[C@@H]1[C@@H](NC([C@@H](N)CC2=CC=C(OC)C=C2)=O)[C@H]([C@H](N3C=NC4=C(N=CN=C43)N(C)C)O1)O
InChi Key
RXWNCPJZOCPEPQ-NVWDDTSBSA-N
InChi Code
InChI=1S/C22H29N7O5/c1-28(2)19-17-20(25-10-24-19)29(11-26-17)22-18(31)16(15(9-30)34-22)27-21(32)14(23)8-12-4-6-13(33-3)7-5-12/h4-7,10-11,14-16,18,22,30-31H,8-9,23H2,1-3H3,(H,27,32)/t14-,15+,16+,18+,22+/m0/s1
Chemical Name
Adenosine, 3'-(((2S)-2-amino-3-(4-methoxyphenyl)-1-oxopropyl)amino)-3'-deoxy-N,N-dimethyl- InChi Key
Synonyms
Puromycin; Puromycine; NSC-3055; NSC3055; Stylomycin; Puromicina; Puromycine; Puromycinum; Stillomycin; P-638; NSC 3055
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1208 mL 10.6040 mL 21.2080 mL
5 mM 0.4242 mL 2.1208 mL 4.2416 mL
10 mM 0.2121 mL 1.0604 mL 2.1208 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us